This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

1995 IberoAmerican, 3

Let $ r$ and $ s$ two orthogonal lines that does not lay on the same plane. Let $ AB$ be their common perpendicular, where $ A\in{}r$ and $ B\in{}s$(*).Consider the sphere of diameter $ AB$. The points $ M\in{r}$ and $ N\in{s}$ varies with the condition that $ MN$ is tangent to the sphere on the point $ T$. Find the locus of $ T$. Note: The plane that contains $ B$ and $ r$ is perpendicular to $ s$.

2023 IMC, 7

Tags: function , calculus
Let $V$ be the set of all continuous functions $f\colon [0,1]\to \mathbb{R}$, differentiable on $(0,1)$, with the property that $f(0)=0$ and $f(1)=1$. Determine all $\alpha \in \mathbb{R}$ such that for every $f\in V$, there exists some $\xi \in (0,1)$ such that \[f(\xi)+\alpha = f'(\xi)\]

1972 IMO, 2

$f$ and $g$ are real-valued functions defined on the real line. For all $x$ and $y, f(x+y)+f(x-y)=2f(x)g(y)$. $f$ is not identically zero and $|f(x)|\le1$ for all $x$. Prove that $|g(x)|\le1$ for all $x$.

2019 Korea Junior Math Olympiad., 6

Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ which satisfies the followings. (Note that $\mathbb{R}$ stands for the set of all real numbers) (1) For each real numbers $x$, $y$, the equality $f(x+f(x)+xy) = 2f(x)+xf(y)$ holds. (2) For every real number $z$, there exists $x$ such that $f(x) = z$.

2009 Indonesia MO, 2

For any real $ x$, let $ \lfloor x\rfloor$ be the largest integer that is not more than $ x$. Given a sequence of positive integers $ a_1,a_2,a_3,\ldots$ such that $ a_1>1$ and \[ \left\lfloor\frac{a_1\plus{}1}{a_2}\right\rfloor\equal{}\left\lfloor\frac{a_2\plus{}1}{a_3}\right\rfloor\equal{}\left\lfloor\frac{a_3\plus{}1}{a_4}\right\rfloor\equal{}\cdots\] Prove that \[ \left\lfloor\frac{a_n\plus{}1}{a_{n\plus{}1}}\right\rfloor\leq1\] holds for every positive integer $ n$.

1998 Switzerland Team Selection Test, 1

A function $f : R -\{0\} \to R$ has the following properties: (i) $f(x)- f(y) = f(x)f\left(\frac{1}{y}\right)- f(y)f\left(\frac{1}{x}\right)$ for all $x,y \ne 0$, (ii) $f$ takes the value $\frac12$ at least once. Determine $f(-1)$. Prove that $f$ is a periodic function

2005 Purple Comet Problems, 17

Tags: function
Functions $f$ and $g$ are defined so that $f(1) = 4$, $g(1) = 9$, and for each integer $n \ge 1$, $f(n+1) = 2f(n) + 3g(n) + 2n $ and $g(n+1) = 2g(n) + 3 f(n) + 5$. Find $f(2005) - g(2005)$.

2021 Bangladeshi National Mathematical Olympiad, 5

$g(x):\mathbb{Z}\rightarrow\mathbb{Z}$ is a function that satisfies $$g(x)+g(y)=g(x+y)-xy.$$ If $g(23)=0$, what is the sum of all possible values of $g(35)$?

2016 China Team Selection Test, 6

Tags: function , algebra
Find all functions $f: \mathbb R^+ \rightarrow \mathbb R^+$ satisfying the following condition: for any three distinct real numbers $a,b,c$, a triangle can be formed with side lengths $a,b,c$, if and only if a triangle can be formed with side lengths $f(a),f(b),f(c)$.

2014 Contests, 2

Tags: function , algebra
Find all functions $f:\mathbb{R}\backslash\{0\}\rightarrow\mathbb{R}$ for which $xf(xy) + f(-y) = xf(x)$ for all non-zero real numbers $x, y$.

1985 IMO Longlists, 87

Determine the radius of a sphere $S$ that passes through the centroids of each face of a given tetrahedron $T$ inscribed in a unit sphere with center $O$. Also, determine the distance from $O$ to the center of $S$ as a function of the edges of $T.$

2006 Germany Team Selection Test, 1

Let $n\geq 3$ be a fixed integer. Each side and each diagonal of a regular $n$-gon is labelled with a number from the set $\left\{1;\;2;\;...;\;r\right\}$ in a way such that the following two conditions are fulfilled: [b]1.[/b] Each number from the set $\left\{1;\;2;\;...;\;r\right\}$ occurs at least once as a label. [b]2.[/b] In each triangle formed by three vertices of the $n$-gon, two of the sides are labelled with the same number, and this number is greater than the label of the third side. [b](a)[/b] Find the maximal $r$ for which such a labelling is possible. [b](b)[/b] [i]Harder version (IMO Shortlist 2005):[/i] For this maximal value of $r$, how many such labellings are there? [hide="Easier version (5th German TST 2006) - contains answer to the harder version"] [i]Easier version (5th German TST 2006):[/i] Show that, for this maximal value of $r$, there are exactly $\frac{n!\left(n-1\right)!}{2^{n-1}}$ possible labellings.[/hide] [i]Proposed by Federico Ardila, Colombia[/i]

2015 IFYM, Sozopol, 2

Find all functions $f$ from positive integers to themselves such that: 1)$f(mn)=f(m)f(n)$ for all positive integers $m, n$ 2)$\{1, 2, ..., n\}=\{f(1), f(2), ... f(n)\}$ is true for infinitely many positive integers $n$.

2008 Putnam, A1

Let $ f: \mathbb{R}^2\to\mathbb{R}$ be a function such that $ f(x,y)\plus{}f(y,z)\plus{}f(z,x)\equal{}0$ for real numbers $ x,y,$ and $ z.$ Prove that there exists a function $ g: \mathbb{R}\to\mathbb{R}$ such that $ f(x,y)\equal{}g(x)\minus{}g(y)$ for all real numbers $ x$ and $ y.$

2011 China Team Selection Test, 1

Tags: algebra , function
Let $n\geq 2$ be a given integer. Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that \[f(x-f(y))=f(x+y^n)+f(f(y)+y^n), \qquad \forall x,y \in \mathbb R.\]

2013 USAMTS Problems, 5

Niki and Kyle play a triangle game. Niki first draws $\triangle ABC$ with area $1$, and Kyle picks a point $X$ inside $\triangle ABC$. Niki then draws segments $\overline{DG}$, $\overline{EH}$, and $\overline{FI}$, all through $X$, such that $D$ and $E$ are on $\overline{BC}$, $F$ and $G$ are on $\overline{AC}$, and $H$ and $I$ are on $\overline{AB}$. The ten points must all be distinct. Finally, let $S$ be the sum of the areas of triangles $DEX$, $FGX$, and $HIX$. Kyle earns $S$ points, and Niki earns $1-S$ points. If both players play optimally to maximize the amount of points they get, who will win and by how much?

2003 AIME Problems, 1

Tags: function
The product $N$ of three positive integers is $6$ times their sum, and one of the integers is the sum of the other two. Find the sum of all possible values of $N.$

1993 Vietnam National Olympiad, 3

Find a function $f(n)$ on the positive integers with positive integer values such that $f( f(n) ) = 1993 n^{1945}$ for all $n$.

2023 USAJMO, 3

Consider an $n$-by-$n$ board of unit squares for some odd positive integer $n$. We say that a collection $C$ of identical dominoes is a [i]maximal grid-aligned configuration[/i] on the board if $C$ consists of $(n^2-1)/2$ dominoes where each domino covers exactly two neighboring squares and the dominoes don't overlap: $C$ then covers all but one square on the board. We are allowed to slide (but not rotate) a domino on the board to cover the uncovered square, resulting in a new maximal grid-aligned configuration with another square uncovered. Let $k(C)$ be the number of distinct maximal grid-aligned configurations obtainable from $C$ by repeatedly sliding dominoes. Find the maximum value of $k(C)$ as a function of $n$. [i]Proposed by Holden Mui[/i]

2019 BMT Spring, 8

Tags: function
For a positive integer $ n $, define $ \phi(n) $ as the number of positive integers less than or equal to $ n $ that are relatively prime to $ n $. Find the sum of all positive integers $ n $ such that $ \phi(n) = 20 $.

1969 Canada National Olympiad, 7

Show that there are no integers $a,b,c$ for which $a^2+b^2-8c=6$.

2010 IMO, 3

Find all functions $g:\mathbb{N}\rightarrow\mathbb{N}$ such that \[\left(g(m)+n\right)\left(g(n)+m\right)\] is a perfect square for all $m,n\in\mathbb{N}.$ [i]Proposed by Gabriel Carroll, USA[/i]

1981 Canada National Olympiad, 1

For any real number $t$, denote by $[t]$ the greatest integer which is less than or equal to $t$. For example: $[8] = 8$, $[\pi] = 3$, and $[-5/2] = -3$. Show that the equation \[[x] + [2x] + [4x] + [8x] + [16x] + [32x] = 12345\] has no real solution.

2009 India IMO Training Camp, 6

Prove The Following identity: $ \sum_{j \equal{} 0}^n \left ({3n \plus{} 2 \minus{} j \choose j}2^j \minus{} {3n \plus{} 1 \minus{} j \choose j \minus{} 1}2^{j \minus{} 1}\right ) \equal{} 2^{3n}$. The Second term on left hand side is to be regarded zero for j=0.

1988 IMO Shortlist, 27

Let $ ABC$ be an acute-angled triangle. Let $ L$ be any line in the plane of the triangle $ ABC$. Denote by $ u$, $ v$, $ w$ the lengths of the perpendiculars to $ L$ from $ A$, $ B$, $ C$ respectively. Prove the inequality $ u^2\cdot\tan A \plus{} v^2\cdot\tan B \plus{} w^2\cdot\tan C\geq 2\cdot S$, where $ S$ is the area of the triangle $ ABC$. Determine the lines $ L$ for which equality holds.