This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

1963 Miklós Schweitzer, 8

Let the Fourier series \[ \frac{a_0}{2}+ \sum _{k\geq 1}(a_k\cos kx+b_k \sin kx)\] of a function $ f(x)$ be absolutely convergent, and let \[ a^2_k+b^2_k \geq a_{k+1}^2+b_{k+1}^2 \;(k=1,2,...)\ .\] Show that \[ \frac1h \int_0^{2\pi} (f(x+h)-f(x-h))^2dx \;(h>0)\] is uniformly bounded in $ h$. [K. Tandori]

2023 USA IMO Team Selection Test, 4

Let $\lfloor \bullet \rfloor$ denote the floor function. For nonnegative integers $a$ and $b$, their [i]bitwise xor[/i], denoted $a \oplus b$, is the unique nonnegative integer such that $$ \left \lfloor \frac{a}{2^k} \right \rfloor+ \left\lfloor\frac{b}{2^k} \right\rfloor - \left\lfloor \frac{a\oplus b}{2^k}\right\rfloor$$ is even for every $k \ge 0$. Find all positive integers $a$ such that for any integers $x>y\ge 0$, we have \[ x\oplus ax \neq y \oplus ay. \] [i]Carl Schildkraut[/i]

2010 VJIMC, Problem 4

Let $f:[0,1]\to\mathbb R$ be a function satisfying $$|f(x)-f(y)|\le|x-y|$$for every $x,y\in[0,1]$. Show that for every $\varepsilon>0$ there exists a countable family of rectangles $(R_i)$ of dimensions $a_i\times b_i$, $a_i\le b_i$ in the plane such that $$\{(x,f(x)):x\in[0,1]\}\subset\bigcup_iR_i\text{ and }\sum_ia_i<\varepsilon.$$(The edges of the rectangles are not necessarily parallel to the coordinate axes.)

2012 Iran Team Selection Test, 2

Let $g(x)$ be a polynomial of degree at least $2$ with all of its coefficients positive. Find all functions $f:\mathbb R^+ \longrightarrow \mathbb R^+$ such that \[f(f(x)+g(x)+2y)=f(x)+g(x)+2f(y) \quad \forall x,y\in \mathbb R^+.\] [i]Proposed by Mohammad Jafari[/i]

2008 Turkey MO (2nd round), 3

There is a connected network with $ 2008$ computers, in which any of the two cycles don't have any common vertex. A hacker and a administrator are playing a game in this network. On the $ 1st$ move hacker selects one computer and hacks it, on the $ 2nd$ move administrator selects another computer and protects it. Then on every $ 2k\plus{}1th$ move hacker hacks one more computer(if he can) which wasn't protected by the administrator and is directly connected (with an edge) to a computer which was hacked by the hacker before and on every $ 2k\plus{}2th$ move administrator protects one more computer(if he can) which wasn't hacked by the hacker and is directly connected (with an edge) to a computer which was protected by the administrator before for every $ k>0$. If both of them can't make move, the game ends. Determine the maximum number of computers which the hacker can guarantee to hack at the end of the game.

2006 Taiwan TST Round 1, 2

Tags: function , algebra
Let $\mathbb{N}$ be the set of all positive integers. The function $f: \mathbb{N} \to \mathbb{N}$ satisfies $f(1)=3, f(mn)=f(m)f(n)-f(m+n)+2$ for all $m,n \in \mathbb{N}$. Prove that $f$ does not exist. Comment: The original problem asked for the value of $f(2006)$, which obviously does not exist when $f$ does not. This was probably a mistake by the Olympiad committee. Hence the modified problem.

2013 Online Math Open Problems, 25

Let $ABCD$ be a quadrilateral with $AD = 20$ and $BC = 13$. The area of $\triangle ABC$ is $338$ and the area of $\triangle DBC$ is $212$. Compute the smallest possible perimeter of $ABCD$. [i]Proposed by Evan Chen[/i]

2025 Bulgarian Winter Tournament, 12.1

Let $a,b,c$ be positive real numbers with $a+b>c$. Prove that $ax + \sin(bx) + \cos(cx) > 1$ for all $x\in \left(0, \frac{\pi}{a+b+c}\right)$.

2008 Moldova Team Selection Test, 3

Let $ \Gamma(I,r)$ and $ \Gamma(O,R)$ denote the incircle and circumcircle, respectively, of a triangle $ ABC$. Consider all the triangels $ A_iB_iC_i$ which are simultaneously inscribed in $ \Gamma(O,R)$ and circumscribed to $ \Gamma(I,r)$. Prove that the centroids of these triangles are concyclic.

2007 Nicolae Coculescu, 3

Consider a function $ f:\mathbb{R}\longrightarrow\mathbb{R} . $ Show that: [b]a)[/b] $ f $ is nondecreasing, if $ f+g $ is nondecreasing for any increasing function $ g:\mathbb{R}\longrightarrow\mathbb{R} . $ [b]b)[/b] $ f $ is nondecreasing, if $ f\cdot g $ is nondecreasing for any increasing function $ g:\mathbb{R}\longrightarrow\mathbb{R} . $ [i]Cristian Mangra[/i]

2007 Stars of Mathematics, 1

Prove that there exists just one function $ f:\mathbb{N}^2\longrightarrow\mathbb{N} $ which simultaneously satisfies: $ \text{(1)}\quad f(m,n)=f(n,m),\quad\forall m,n\in\mathbb{N} $ $ \text{(2)}\quad f(n,n)=n,\quad\forall n\in\mathbb{N} $ $ \text{(3)}\quad n>m\implies (n-m)f(m,n)=nf(m,n-m), \quad\forall m,n\in\mathbb{N} $

2009 Tuymaada Olympiad, 4

The sum of several non-negative numbers is not greater than 200, while the sum of their squares is not less than 2500. Prove that among them there are four numbers whose sum is not less than 50. [i]Proposed by A. Khabrov[/i]

2014 Harvard-MIT Mathematics Tournament, 4

Compute \[\sum_{k=0}^{100}\left\lfloor\dfrac{2^{100}}{2^{50}+2^k}\right\rfloor.\] (Here, if $x$ is a real number, then $\lfloor x\rfloor$ denotes the largest integer less than or equal to $x$.)

2001 All-Russian Olympiad, 3

Points $A_1, B_1, C_1$ inside an acute-angled triangle $ABC$ are selected on the altitudes from $A, B, C$ respectively so that the sum of the areas of triangles $ABC_1, BCA_1$, and $CAB_1$ is equal to the area of triangle $ABC$. Prove that the circumcircle of triangle $A_1B_1C_1$ passes through the orthocenter $H$ of triangle $ABC$.

2022 European Mathematical Cup, 3

Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that $$ f(x^3) + f(y)^3 + f(z)^3 = 3xyz $$ for all real numbers $x$, $y$ and $z$ with $x+y+z=0$.

1964 AMC 12/AHSME, 31

Let \[f(n)=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{5-3\sqrt{5}}{10}\left(\dfrac{1-\sqrt{5}}{2}\right)^n.\] Then $f(n+1)-f(n-1)$, expressed in terms of $f(n)$, equals: $\textbf{(A)}\ \dfrac{1}{2}f(n) \qquad \textbf{(B)}\ f(n)\qquad \textbf{(C)}\ 2f(n)+1 \qquad \textbf{(D)}\ f^2(n) \qquad \textbf{(E)}\ \dfrac{1}{2}(f^2(n)-1)$

2004 Nicolae Păun, 1

Prove that any function that maps the integers to themselves is a sum of any finite number of injective functions that map the integers to themselves. [i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]

2005 Alexandru Myller, 4

Let $K$ be a finite field and $f:K\to K^*$. Prove that there is a reducible polynomial $P\in K[X]$ s.t. $P(x)=f(x),\forall x\in K$. [i]Marian Andronache[/i]

1993 All-Russian Olympiad, 3

Find all functions $f(x)$ with the domain of all positive real numbers, such that for any positive numbers $x$ and $y$, we have $f(x^y)=f(x)^{f(y)}$.

2004 China Team Selection Test, 1

Given non-zero reals $ a$, $ b$, find all functions $ f: \mathbb{R} \longmapsto \mathbb{R}$, such that for every $ x, y \in \mathbb{R}$, $ y \neq 0$, $ f(2x) \equal{} af(x) \plus{} bx$ and $ \displaystyle f(x)f(y) \equal{} f(xy) \plus{} f \left( \frac {x}{y} \right)$.

Dumbest FE I ever created, 5.

Find all non decreasing function $f : \mathbb{R} \to \mathbb{R}$ such that for all $x,y \in \mathbb{R}$ and $m,n \in \mathbb{N}_0$ such that $m+n \neq 0$ there exist $m',n' \in \mathbb{N}_0$ such that $m'+n'=m+n+1$ and $$f(f^m(x)+f^n(y))=f^{m'}(x)+f^{n'}(y)$$ . Note : $f^0(x)=x$ and $f^{n}(x)=f(f^{n-1}(x))$ for all $n \in \mathbb{N}$ . [hide=original]Find all non decreasing functions $f \colon \mathbb{R} \to \mathbb{R}$ such that for all $x,y \in \mathbb{R}$ $$ f(x+f(y))=f(x)+f(y) \text{ or } f(f(x))+y$$ .[/hide]

1981 IMO Shortlist, 16

A sequence of real numbers $u_1, u_2, u_3, \dots$ is determined by $u_1$ and the following recurrence relation for $n \geq 1$: \[4u_{n+1} = \sqrt[3]{ 64u_n + 15.}\] Describe, with proof, the behavior of $u_n$ as $n \to \infty.$

2019 Belarus Team Selection Test, 8.2

Let $\mathbb Z$ be the set of all integers. Find all functions $f:\mathbb Z\to\mathbb Z$ satisfying the following conditions: 1. $f(f(x))=xf(x)-x^2+2$ for all $x\in\mathbb Z$; 2. $f$ takes all integer values. [i](I. Voronovich)[/i]

1991 China Team Selection Test, 2

Let $f$ be a function $f: \mathbb{N} \cup \{0\} \mapsto \mathbb{N},$ and satisfies the following conditions: (1) $f(0) = 0, f(1) = 1,$ (2) $f(n+2) = 23 \cdot f(n+1) + f(n), n = 0,1, \ldots.$ Prove that for any $m \in \mathbb{N}$, there exist a $d \in \mathbb{N}$ such that $m | f(f(n)) \Leftrightarrow d | n.$

2021 Iran Team Selection Test, 4

Find all functions $f : \mathbb{N} \rightarrow \mathbb{R}$ such that for all triples $a,b,c$ of positive integers the following holds : $$f(ac)+f(bc)-f(c)f(ab) \ge 1$$ Proposed by [i]Mojtaba Zare[/i]