This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2007 Harvard-MIT Mathematics Tournament, 9

Tags: limit , calculus , function
$g$ is a twice differentiable function over the positive reals such that \begin{align}g(x)+2x^3g^\prime(x)+x^4g^{\prime\prime}(x)&= 0 \qquad\text{ for all positive reals } x\\\lim_{x\to\infty}xg(x)&=1\end{align} Find the real number $\alpha>1$ such that $g(\alpha)=1/2$.

1994 Vietnam Team Selection Test, 2

Determine all functions $f: \mathbb{R} \mapsto \mathbb{R}$ satisfying \[f\left(\sqrt{2} \cdot x\right) + f\left(4 + 3 \cdot \sqrt{2} \cdot x \right) = 2 \cdot f\left(\left(2 + \sqrt{2}\right) \cdot x\right)\] for all $x$.

2009 ITAMO, 3

A natural number $k$ is said $n$-squared if by colouring the squares of a $2n \times k$ chessboard, in any manner, with $n$ different colours, we can find $4$ separate unit squares of the same colour, the centers of which are vertices of a rectangle having sides parallel to the sides of the board. Determine, in function of $n$, the smallest natural $k$ that is $n$-squared.

1991 Arnold's Trivium, 64

Tags: function , domain , algebra
Does the Cauchy problem $u|_{y=x^2}=1$, $(\nabla u)^2=1$ have a smooth solution in the domain $y\ge x^2$? In the domain $y\le x^2$?

2008 AMC 10, 5

Tags: function
For real numbers $ a$ and $ b$, define $ a\$b\equal{}(a\minus{}b)^2$. What is $ (x\minus{}y)^2\$(y\minus{}x)^2$? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ x^2\plus{}y^2 \qquad \textbf{(C)}\ 2x^2 \qquad \textbf{(D)}\ 2y^2 \qquad \textbf{(E)}\ 4xy$

2011 Today's Calculation Of Integral, 702

$f(x)$ is a continuous function defined in $x>0$. For all $a,\ b\ (a>0,\ b>0)$, if $\int_a^b f(x)\ dx$ is determined by only $\frac{b}{a}$, then prove that $f(x)=\frac{c}{x}\ (c: constant).$

1988 Brazil National Olympiad, 3

Find all functions $f:\mathbb{N}^* \rightarrow \mathbb{N}$ such that [list] [*] $f(x \cdot y) = f(x) + f(y)$ [*] $f(30) = 0$ [*] $f(x)=0$ always when the units digit of $x$ is $7$ [/list]

2006 Germany Team Selection Test, 1

Find all real solutions $x$ of the equation $\cos\cos\cos\cos x=\sin\sin\sin\sin x$. (Angles are measured in radians.)

1997 Romania National Olympiad, 1

function $f:\mathbb{N}^{\star} \times \mathbb{N}^{\star} \rightarrow \mathbb{N}^{\star}$ ($\mathbb{N}^{\star}=\mathbb{N}\cup \{0\}$)with these conditon: 1- $f(0,x)=x+1$ 2- $f(x+1,0)=f(x,1)$ 3- $f(x+1,y+1)=f(x,f(x+1,y))$(romania 1997) find $f(3,1997)$

1977 AMC 12/AHSME, 11

Tags: function
For each real number $x$, let $\textbf{[}x\textbf{]}$ be the largest integer not exceeding $x$ (i.e., the integer $n$ such that $n\le x<n+1$). Which of the following statements is (are) true? $\textbf{I. [}x+1\textbf{]}=\textbf{[}x\textbf{]}+1\text{ for all }x$ $\textbf{II. [}x+y\textbf{]}=\textbf{[}x\textbf{]}+\textbf{[}y\textbf{]}\text{ for all }x\text{ and }y$ $\textbf{III. [}xy\textbf{]}=\textbf{[}x\textbf{]}\textbf{[}y\textbf{]}\text{ for all }x\text{ and }y$ $\textbf{(A) }\text{none}\qquad\textbf{(B) }\textbf{I }\text{only}\qquad\textbf{(C) }\textbf{I}\text{ and }\textbf{II}\text{ only}\qquad\textbf{(D) }\textbf{III }\text{only}\qquad \textbf{(E) }\text{all}$

2019 Mathematical Talent Reward Programme, MCQ: P 1

Tags: function
Let $f : (0, \infty) \to \mathbb{R}$ is differentiable such that $\lim \limits_{x \to \infty} f(x)=2019$ Then which of the following is correct? [list=1] [*] $\lim \limits_{x \to \infty} f'(x)$ always exists but not necessarily zero. [*] $\lim \limits_{x \to \infty} f'(x)$ always exists and is equal to zero. [*] $\lim \limits_{x \to \infty} f'(x)$ may not exist. [*] $\lim \limits_{x \to \infty} f'(x)$ exists if $f$ is twice differentiable. [/list]

1994 IMO Shortlist, 5

For any positive integer $ k$, let $ f_k$ be the number of elements in the set $ \{ k \plus{} 1, k \plus{} 2, \ldots, 2k\}$ whose base 2 representation contains exactly three 1s. (a) Prove that for any positive integer $ m$, there exists at least one positive integer $ k$ such that $ f(k) \equal{} m$. (b) Determine all positive integers $ m$ for which there exists [i]exactly one[/i] $ k$ with $ f(k) \equal{} m$.

2018 Stars of Mathematics, 3

Given a positive integer $n$, determine the largest integer $M$ satisfying $$\lfloor \sqrt{a_1}\rfloor + ... + \lfloor \sqrt{a_n} \rfloor \ge \lfloor\sqrt{ a_1 + ... + a_n +M \cdot min(a_1,..., a_n)}\rfloor $$ for all non-negative integers $a_1,...., a_n$. S. Berlov, A. Khrabrov

2011 Singapore MO Open, 5

Find all pairs of positive integers $(m,n)$ such that \[m+n-\frac{3mn}{m+n}=\frac{2011}{3}.\]

1987 IMO Longlists, 6

Let f be a function that satisfies the following conditions: $(i)$ If $x > y$ and $f(y) - y \geq v \geq f(x) - x$, then $f(z) = v + z$, for some number $z$ between $x$ and $y$. $(ii)$ The equation $f(x) = 0$ has at least one solution, and among the solutions of this equation, there is one that is not smaller than all the other solutions; $(iii)$ $f(0) = 1$. $(iv)$ $f(1987) \leq 1988$. $(v)$ $f(x)f(y) = f(xf(y) + yf(x) - xy)$. Find $f(1987)$. [i]Proposed by Australia.[/i]

2003 AMC 10, 6

Tags: function
Define $ x \heartsuit y$ to be $ |x\minus{}y|$ for all real numbers $ x$ and $ y$. Which of the following statements is [b]not[/b] true? $\textbf{(A)}\ x \heartsuit y \equal{} y \heartsuit x \text{ for all } x \text{ and } y$ $\textbf{(B)}\ 2(x \heartsuit y) \equal{} (2x) \heartsuit (2y) \text{ for all } x \text{ and } y$ $\textbf{(C)}\ x \heartsuit 0 \equal{} x \text{ for all } x$ $\textbf{(D)}\ x \heartsuit x \equal{} 0 \text{ for all } x$ $\textbf{(E)}\ x \heartsuit y > 0 \text{ if } x \ne y$

2000 Miklós Schweitzer, 7

Let $H(D)$ denote the space of functions holomorphic on the disc $D=\{ z\colon |z|<1 \}$, endowed with the topology of uniform convergence on each compact subset of $D$. If $f(z)=\sum_{n=0}^{\infty} a_nz^n$, then we shall denote $S_n(f,z)=\sum_{k=0}^n a_kz^k$. A function $f\in H(D)$ is called [i]universal[/i] if, for every continuous function $g\colon\partial D\rightarrow \mathbb{C}$ and for every $\varepsilon >0$, there are partial sums $S_{n(j)}(f,z)$ approximating $g$ uniformly on the arc $\{ e^{it} \colon 0\le t\le 2\pi - \varepsilon\}$. Prove that the set of universal functions contains a dense $G_{\delta}$ subset of $H(D)$.

1985 Traian Lălescu, 1.2

Let $ p\ge 2 $ be a fixed natural number, and let the sequence of functions $ \left( f_n\right)_{n\ge 2}:[0,1]\longrightarrow\mathbb{R} $ defined as $ f_n (x)=f_{n-1}\left( f_1 (x)\right) , $ where $ f_1 (x)=\sqrt[p]{1-x^p} . $ Find $ a\in (0,1) $ such that: [b]a)[/b] exists $ b\ge a $ so that $ f_1:[a,b]\longrightarrow [a,b] $ is bijective. [b]b)[/b] $ \forall x\in [0,1]\quad\exists y\in [0,1]\quad m\in\mathbb{N}\implies \left| f_m(x)-f_m(y)\right| >a|x-y| $

2014 Contests, 2

Let $f$ be the function defined by $f(x) = 4x(1 - x)$. Let $n$ be a positive integer. Prove that there exist distinct real numbers $x_1$, $x_2$, $\ldots\,$, $x_n$ such that $x_{i + 1} = f(x_i)$ for each integer $i$ with $1 \le i \le n - 1$, and such that $x_1 = f(x_n)$.

2011 Romanian Masters In Mathematics, 1

Given a positive integer $\displaystyle n = \prod_{i=1}^s p_i^{\alpha_i}$, we write $\Omega(n)$ for the total number $\displaystyle \sum_{i=1}^s \alpha_i$ of prime factors of $n$, counted with multiplicity. Let $\lambda(n) = (-1)^{\Omega(n)}$ (so, for example, $\lambda(12)=\lambda(2^2\cdot3^1)=(-1)^{2+1}=-1$). Prove the following two claims: i) There are infinitely many positive integers $n$ such that $\lambda(n) = \lambda(n+1) = +1$; ii) There are infinitely many positive integers $n$ such that $\lambda(n) = \lambda(n+1) = -1$. [i](Romania) Dan Schwarz[/i]

2000 APMO, 4

Let $n,k$ be given positive integers with $n>k$. Prove that: \[ \frac{1}{n+1} \cdot \frac{n^n}{k^k (n-k)^{n-k}} < \frac{n!}{k! (n-k)!} < \frac{n^n}{k^k(n-k)^{n-k}} \]

2010 Today's Calculation Of Integral, 553

Find the continuous function such that $ f(x)\equal{}\frac{e^{2x}}{2(e\minus{}1)}\int_0^1 e^{\minus{}y}f(y)dy\plus{}\int_0^{\frac 12} f(y)dy\plus{}\int_0^{\frac 12}\sin ^ 2(\pi y)dy$.

2021 JHMT HS, 2

Compute the smallest positive integer $n$ such that $\int_{0}^{n} \lfloor x\rfloor\,dx$ is at least $2021.$

2016 China Northern MO, 3

$m(m>1)$ is an intenger, define $(a_n)$: $a_0=m,a_{n}=\varphi(a_{n-1})$ for all positive intenger $n$. If for all nonnegative intenger $k$, $a_{k+1}\mid a_k$, find all $m$ that is not larger than $2016$. Note: $\varphi(n)$ means Euler Function.

2006 Harvard-MIT Mathematics Tournament, 10

Suppose $f$ and $g$ are differentiable functions such that \[xg(f(x))f^\prime(g(x))g^\prime(x)=f(g(x))g^\prime(f(x))f^\prime(x)\] for all real $x$. Moreover, $f$ is nonnegative and $g$ is positive. Furthermore, \[\int_0^a f(g(x))dx=1-\dfrac{e^{-2a}}{2}\] for all reals $a$. Given that $g(f(0))=1$, compute the value of $g(f(4))$.