This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2002 National High School Mathematics League, 15

Tags: function
Quadratic function $f(x)=ax^2+bx+c$ satisfies that: $(1)\forall x\in\mathbb{R},f(x-4)=f(2-x),f(x)\geq x$; $(2)\forall x\in(0,2),f(x)\leq\left(\frac{x+1}{2}\right)^2$; $(3)\min\limits_{x\in\mathbb{R}}f(x)=0$ Find the maximum of $m(m>1)$, satisfying: There exists $t\in\mathbb{R}$, as long as $x\in[1,m]$, then $f(x+t)\leq x$.

2011 Pre-Preparation Course Examination, 2

by using the formula $\pi cot(\pi z)=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{2z}{z^2-n^2}$ calculate values of $\zeta(2k)$ on terms of bernoli numbers and powers of $\pi$.

MathLinks Contest 2nd, 6.1

Determine the parity of the positive integer $N$, where $$N = \lfloor \frac{2002!}{2001 \cdot2003} \rfloor.$$

2011 Bogdan Stan, 3

Solve in $ \mathbb{R} $ the equation $ 4^{x^2-x}=\log_2 x+\sqrt{x-1} +14. $ [i]Marin Tolosi[/i]

2009 District Olympiad, 4

a) Prove that the function $F:\mathbb{R}\rightarrow \mathbb{R},\ F(x)=2\lfloor x\rfloor-\cos(3\pi\{x\})$ is continuous over $\mathbb{R}$ and for any $y\in \mathbb{R}$, the equation $F(x)=y$ has exactly three solutions. b) Let $k$ a positive even integer. Prove that there is no function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $f$ is continuous over $\mathbb{R}$ and that for any $y\in \text{Im}\ f$, the equation $f(x)=y$ has exactly $k$ solutions $(\text{Im}\ f=f(\mathbb{R}))$.

2010 Baltic Way, 5

Tags: function , algebra
Let $\mathbb{R}$ denote the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)\] for all $x,y\in\mathbb{R}$.

2012 China Second Round Olympiad, 6

Let $f(x)$ be an odd function on $\mathbb{R}$, such that $f(x)=x^2$ when $x\ge 0$. Knowing that for all $x\in [a,a+2]$, the inequality $f(x+a)\ge 2f(x)$ holds, find the range of real number $a$.

1995 Putnam, 2

An ellipse, whose semi-axes have length $a$ and $b$, rolls without slipping on the curve $y=c\sin{\left(\frac{x}{a}\right)}$. How are $a,b,c$ related, given that the ellipse completes one revolution when it traverses one period of the curve?

2010 Contests, 1

There are ten coins a line, which are indistinguishable. It is known that two of them are false and have consecutive positions on the line. For each set of positions, you may ask how many false coins it contains. Is it possible to identify the false coins by making only two of those questions, without knowing the answer to the first question before making the second?

Russian TST 2018, P2

Tags: function , algebra
A sequence of real numbers $a_1,a_2,\ldots$ satisfies the relation $$a_n=-\max_{i+j=n}(a_i+a_j)\qquad\text{for all}\quad n>2017.$$ Prove that the sequence is bounded, i.e., there is a constant $M$ such that $|a_n|\leq M$ for all positive integers $n$.

2011 Bulgaria National Olympiad, 3

Tags: limit , function , geometry
Triangle $ABC$ and a function $f:\mathbb{R}^+\to\mathbb{R}$ have the following property: for every line segment $DE$ from the interior of the triangle with midpoint $M$, the inequality $f(d(D))+f(d(E))\le 2f(d(M))$, where $d(X)$ is the distance from point $X$ to the nearest side of the triangle ($X$ is in the interior of $\triangle ABC$). Prove that for each line segment $PQ$ and each point interior point $N$ the inequality $|QN|f(d(P))+|PN|f(d(Q))\le |PQ|f(d(N))$ holds.

Gheorghe Țițeica 2025, P1

Find all continuous functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $f(x+y)=f(x+f(y))$ for all $x,y\in\mathbb{R}$.

1998 Dutch Mathematical Olympiad, 5

Tags: function
Find all real solutions of the following equation: \[ (x + 1995)(x + 1997)(x + 1999)(x + 2001) + 16 = 0. \]

2012 China Team Selection Test, 3

Given an integer $n\ge 2$, a function $f:\mathbb{Z}\rightarrow \{1,2,\ldots,n\}$ is called [i]good[/i], if for any integer $k,1\le k\le n-1$ there exists an integer $j(k)$ such that for every integer $m$ we have \[f(m+j(k))\equiv f(m+k)-f(m) \pmod{n+1}. \] Find the number of [i]good[/i] functions.

2009 Today's Calculation Of Integral, 521

Let $ t$ be a positive number. Draw two tangent lines from the point $ (t, \minus{} 1)$ to the parabpla $ y \equal{} x^2$. Denote $ S(t)$ the area bounded by the tangents line and the parabola. Find the minimum value of $ \frac {S(t)}{\sqrt {t}}$.

2024 Indonesia TST, N

Find all functions $f:\mathbb{N} \rightarrow \mathbb{N}$ such that for every prime number $p$ and natural number $x$, $$\{ x,f(x),\cdots f^{p-1}(x) \} $$ is a complete residue system modulo $p$. With $f^{k+1}(x)=f(f^k(x))$ for every natural number $k$ and $f^1(x)=f(x)$. [i]Proposed by IndoMathXdZ[/i]

2005 Vietnam Team Selection Test, 3

Find all functions $f: \mathbb{Z} \mapsto \mathbb{Z}$ satisfying the condition: $f(x^3 +y^3 +z^3 )=f(x)^3+f(y)^3+f(z)^3.$

1995 Miklós Schweitzer, 1

Prove that a harmonic function that is not identically zero in the plane cannot vanish on a two-dimensional positive-measure set.

1986 Iran MO (2nd round), 1

Let $f$ be a function such that \[f(x)=\frac{(x^2-2x+1) \sin \frac{1}{x-1}}{\sin \pi x}.\] Find the limit of $f$ in the point $x_0=1.$

2014-2015 SDML (Middle School), 12

Let $f\left(x\right)=x^2-14x+52$ and $g\left(x\right)=ax+b$, where $a$ and $b$ are positive. Find $a$, given that $f\left(g\left(-5\right)\right)=3$ and $f\left(g\left(0\right)\right)=103$. $\text{(A) }2\qquad\text{(B) }5\qquad\text{(C) }7\qquad\text{(D) }10\qquad\text{(E) }17$

2009 Danube Mathematical Competition, 5

Let $\sigma, \tau$ be two permutations of the quantity $\{1, 2,. . . , n\}$. Prove that there is a function $f: \{1, 2,. . . , n\} \to \{-1, 1\}$ such that for any $1 \le i \le j \le n$, we have $\left|\sum_{k=i}^{j} f(\sigma (k)) \right| \le 2$ and $\left|\sum_{k=i}^{j} f(\tau (k))\right| \le 2$

2012 Putnam, 3

A round-robin tournament among $2n$ teams lasted for $2n-1$ days, as follows. On each day, every team played one game against another team, with one team winning and one team losing in each of the $n$ games. Over the course of the tournament, each team played every other team exactly once. Can one necessarily choose one winning team from each day without choosing any team more than once?

1985 AMC 12/AHSME, 19

Consider the graphs $ y \equal{} Ax^2$ and and $ y^2 \plus{} 3 \equal{} x^2 \plus{} 4y$, where $ A$ is a positive constant and $ x$ and $ y$ are real variables. In how many points do the two graphs intersect? $ \textbf{(A)}\ \text{exactly } 4 \qquad \textbf{(B)}\ \text{exactly } 2$ $ \textbf{(C)}\ \text{at least } 1, \text{ but the number varies for different positive values of } A$ $ \textbf{(D)}\ 0 \text{ for at least one positive value of } A \qquad \textbf{(E)}\ \text{none of these}$

2024 Mongolian Mathematical Olympiad, 3

Let $\mathbb{R}^+$ denote the set of positive real numbers. Determine all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for all positive real numbers $x$ and $y$ : \[f(x)f(y+f(x))=f(1+xy)\] [i]Proposed by Otgonbayar Uuye. [/i]

Oliforum Contest I 2008, 2

Let $ \{a_n\}_{n \in \mathbb{N}_0}$ be a sequence defined as follows: $ a_1=0$, $ a_n=a_{[\frac{n}{2}]}+(-1)^{n(n+1)/2}$, where $ [x]$ denotes the floor function. For every $ k \ge 0$, find the number $ n(k)$ of positive integers $ n$ such that $ 2^k \le n < 2^{k+1}$ and $ a_n=0$.