This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

Today's calculation of integrals, 896

Given sequences $a_n=\frac{1}{n}{\sqrt[n] {_{2n}P_n}},\ b_n=\frac{1}{n^2}{\sqrt[n] {_{4n}P_{2n}}}$ and $c_n=\sqrt[n]{\frac{_{8n}P_{4n}}{_{6n}P_{4n}}}$, find $\lim_{n\to\infty} a_n,\ \lim_{n\to\infty} b_n$and $\lim_{n\to\infty} c_n.$

2000 Iran MO (3rd Round), 2

Tags: function , algebra
Let $A$ and $B$ be arbitrary finite sets and let $f: A\longrightarrow B$ and $g: B\longrightarrow A$ be functions such that $g$ is not onto. Prove that there is a subset $S$ of $A$ such that $\frac{A}{S}=g(\frac{B}{f(S)})$.

2019 ELMO Shortlist, N2

Let $f:\mathbb N\to \mathbb N$. Show that $f(m)+n\mid f(n)+m$ for all positive integers $m\le n$ if and only if $f(m)+n\mid f(n)+m$ for all positive integers $m\ge n$. [i]Proposed by Carl Schildkraut[/i]

2001 National High School Mathematics League, 3

Tags: function
In four functions $y=\sin|x|,y=\cos|x|,y=|\cot x|,y=\lg|\sin x|$, which one is even function, and increases on $\left(0,\frac{\pi}{2}\right)$, with period of $\pi$? $\text{(A)}y=\sin|x|\qquad\text{(B)}y=\cos|x|\qquad\text{(C)}y=|\cot x|\qquad\text{(D)}y=\lg|\sin x|$

2016 IFYM, Sozopol, 3

Let $f: \mathbb{R}^2\rightarrow \mathbb{R}$ be a function for which for arbitrary $x,y,z\in \mathbb{R}$ we have that $f(x,y)+f(y,z)+f(z,x)=0$. Prove that there exist function $g:\mathbb{R}\rightarrow \mathbb{R}$ for which: $f(x,y)=g(x)-g(y),\, \forall x,y\in \mathbb{R}$.

2009 Brazil National Olympiad, 3

Let $ n > 3$ be a fixed integer and $ x_1,x_2,\ldots, x_n$ be positive real numbers. Find, in terms of $ n$, all possible real values of \[ {x_1\over x_n\plus{}x_1\plus{}x_2} \plus{} {x_2\over x_1\plus{}x_2\plus{}x_3} \plus{} {x_3\over x_2\plus{}x_3\plus{}x_4} \plus{} \cdots \plus{} {x_{n\minus{}1}\over x_{n\minus{}2}\plus{}x_{n\minus{}1}\plus{}x_n} \plus{} {x_n\over x_{n\minus{}1}\plus{}x_n\plus{}x_1}\]

1999 Dutch Mathematical Olympiad, 1

Tags: function
Let $f: \mathbb{Z} \rightarrow \{-1,1\}$ be a function such that \[ f(mn) =f(m)f(n),\ \forall m,n \in \mathbb{Z}. \] Show that there exists a positive integer $a$ such that $1 \leq a \leq 12$ and $f(a) = f(a + 1) = 1$.

2005 MOP Homework, 1

Let $n$ be a natural number and $f_1$, $f_2$, ..., $f_n$ be polynomials with integers coeffcients. Show that there exists a polynomial $g(x)$ which can be factored (with at least two terms of degree at least $1$) over the integers such that $f_i(x)+g(x)$ cannot be factored (with at least two terms of degree at least $1$) over the integers for every $i$.

2008 Bulgaria Team Selection Test, 3

Tags: function , algebra
Let $\mathbb{R}^{+}$ be the set of positive real numbers. Find all real numbers $a$ for which there exists a function $f :\mathbb{R}^{+} \to \mathbb{R}^{+}$ such that $3(f(x))^{2}=2f(f(x))+ax^{4}$, for all $x \in \mathbb{R}^{+}$.

2004 Vietnam National Olympiad, 2

Let $x$, $y$, $z$ be positive reals satisfying $\left(x+y+z\right)^{3}=32xyz$ Find the minimum and the maximum of $P=\frac{x^{4}+y^{4}+z^{4}}{\left(x+y+z\right)^{4}}$

2010 Kyrgyzstan National Olympiad, 5

Let $k$ be a constant number larger than $1$. Find all polynomials $P(x)$ such that $P({x^k}) = {\left( {P(x)} \right)^k}$ for all real $x$.

2018 Romania National Olympiad, 3

Let $f:[a,b] \to \mathbb{R}$ be an integrable function and $(a_n) \subset \mathbb{R}$ such that $a_n \to 0.$ $\textbf{a) }$ If $A= \{m \cdot a_n \mid m,n \in \mathbb{N}^* \},$ prove that every open interval of strictly positive real numbers contains elements from $A.$ $\textbf{b) }$ If, for any $n \in \mathbb{N}^*$ and for any $x,y \in [a,b]$ with $|x-y|=a_n,$ the inequality $\left| \int_x^yf(t)dt \right| \leq |x-y|$ is true, prove that $$\left| \int_x^y f(t)dt \right| \leq |x-y|, \: \forall x,y \in [a,b]$$ [i]Nicolae Bourbacut[/i]

2009 Serbia Team Selection Test, 2

Find the least number which is divisible by 2009 and its sum of digits is 2009.

2007 Turkey Team Selection Test, 3

Let $a, b, c$ be positive reals such that their sum is $1$. Prove that \[\frac{1}{ab+2c^{2}+2c}+\frac{1}{bc+2a^{2}+2a}+\frac{1}{ac+2b^{2}+2b}\geq \frac{1}{ab+bc+ac}.\]

2008 Harvard-MIT Mathematics Tournament, 1

Let $ f(x) \equal{} 1 \plus{} x \plus{} x^2 \plus{} \cdots \plus{} x^{100}$. Find $ f'(1)$.

2003 Miklós Schweitzer, 9

Tags: function , domain , algebra
Given fi nitely many open half planes on the Euclidean plane. The boundary lines of these half planes divide the plane into convex domains. Find a polynomial $C(q)$ of degree two so that the following holds: for any $q\ge 1$ integer, if the half planes cover each point of the plane at least $q$ times, then the set of points covered exactly $q$ times is the union of at most $C(q)$ domains. (translated by L. Erdős)

2014 Purple Comet Problems, 18

Tags: function
Let $f$ be a real-valued function such that $4f(x)+xf\left(\tfrac1x\right)=x+1$ for every positive real number $x$. Find $f(2014)$.

1965 AMC 12/AHSME, 23

If we write $ |x^2 \minus{} 4| < N$ for all $ x$ such that $ |x \minus{} 2| < 0.01$, the smallest value we can use for $ N$ is: $ \textbf{(A)}\ .0301 \qquad \textbf{(B)}\ .0349 \qquad \textbf{(C)}\ .0399 \qquad \textbf{(D)}\ .0401 \qquad \textbf{(E)}\ .0499 \qquad$

1997 Austrian-Polish Competition, 6

Show that there is no integer-valued function on the integers such that $f(m+f(n))=f(m)-n$ for all $m,n$.

2009 Today's Calculation Of Integral, 499

Evaluate \[ \int_0^{\pi} (\sqrt[2009]{\cos x}\plus{}\sqrt[2009]{\sin x}\plus{}\sqrt[2009]{\tan x})\ dx.\]

2013 NIMO Problems, 5

For every integer $n \ge 1$, the function $f_n : \left\{ 0, 1, \cdots, n \right\} \to \mathbb R$ is defined recursively by $f_n(0) = 0$, $f_n(1) = 1$ and \[ (n-k) f_n(k-1) + kf_n(k+1) = nf_n(k) \] for each $1 \le k < n$. Let $S_N = f_{N+1}(1) + f_{N+2}(2) + \cdots + f_{2N} (N)$. Find the remainder when $\left\lfloor S_{2013} \right\rfloor$ is divided by $2011$. (Here $\left\lfloor x \right\rfloor$ is the greatest integer not exceeding $x$.) [i]Proposed by Lewis Chen[/i]

2014 Contests, 2

Determine all the functions $f : \mathbb{R}\rightarrow\mathbb{R}$ that satisfies the following. $f(xf(x)+f(x)f(y)+y-1)=f(xf(x)+xy)+y-1$

2011 Federal Competition For Advanced Students, Part 1, 4

Inside or on the faces of a tetrahedron with five edges of length $2$ and one edge of lenght $1$, there is a point $P$ having distances $a, b, c, d$ to the four faces of the tetrahedron. Determine the locus of all points $P$ such that $a+b+c+d$ is minimal and the locus of all points $P$ such that $a+b+c+d$ is maximal.

2003 IMO Shortlist, 2

Find all nondecreasing functions $f: \mathbb{R}\rightarrow\mathbb{R}$ such that (i) $f(0) = 0, f(1) = 1;$ (ii) $f(a) + f(b) = f(a)f(b) + f(a + b - ab)$ for all real numbers $a, b$ such that $a < 1 < b$. [i]Proposed by A. Di Pisquale & D. Matthews, Australia[/i]

2009 Today's Calculation Of Integral, 487

Suppose two functions $ f(x)\equal{}x^4\minus{}x,\ g(x)\equal{}ax^3\plus{}bx^2\plus{}cx\plus{}d$ satisfy $ f(1)\equal{}g(1),\ f(\minus{}1)\equal{}g(\minus{}1)$. Find the values of $ a,\ b,\ c,\ d$ such that $ \int_{\minus{}1}^1 (f(x)\minus{}g(x))^2dx$ is minimal.