This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2005 Iran MO (3rd Round), 1

We call the set $A\in \mathbb R^n$ CN if and only if for every continuous $f:A\to A$ there exists some $x\in A$ such that $f(x)=x$. a) Example: We know that $A = \{ x\in\mathbb R^n | |x|\leq 1 \}$ is CN. b) The circle is not CN. Which one of these sets are CN? 1) $A=\{x\in\mathbb R^3| |x|=1\}$ 2) The cross $\{(x,y)\in\mathbb R^2|xy=0,\ |x|+|y|\leq1\}$ 3) Graph of the function $f:[0,1]\to \mathbb R$ defined by \[f(x)=\sin\frac 1x\ \mbox{if}\ x\neq0,\ f(0)=0\]

2011 Romanian Master of Mathematics, 2

Determine all positive integers $n$ for which there exists a polynomial $f(x)$ with real coefficients, with the following properties: (1) for each integer $k$, the number $f(k)$ is an integer if and only if $k$ is not divisible by $n$; (2) the degree of $f$ is less than $n$. [i](Hungary) Géza Kós[/i]

MathLinks Contest 7th, 3.3

Find the greatest positive real number $ k$ such that the inequality below holds for any positive real numbers $ a,b,c$: \[ \frac ab \plus{} \frac bc \plus{} \frac ca \minus{} 3 \geq k \left( \frac a{b \plus{} c} \plus{} \frac b{c \plus{} a} \plus{} \frac c{a \plus{} b} \minus{} \frac 32 \right). \]

2024 Auckland Mathematical Olympiad, 11

It is known that for quadratic polynomials $P(x)=x^2+ax+b$ and $Q(x)=x^2+cx+d$ the equation $P(Q(x))=Q(P(x))$ does not have real roots. Prove that $b \neq d$.

1985 IMO Longlists, 96

Tags: limit , function , algebra
Determine all functions $f : \mathbb R \to \mathbb R$ satisfying the following two conditions: (a) $f(x + y) + f(x - y) = 2f(x)f(y)$ for all $x, y \in \mathbb R$, and (b) $\lim_{x\to \infty} f(x) = 0$.

2006 China Team Selection Test, 2

The function $f(n)$ satisfies $f(0)=0$, $f(n)=n-f \left( f(n-1) \right)$, $n=1,2,3 \cdots$. Find all polynomials $g(x)$ with real coefficient such that \[ f(n)= [ g(n) ], \qquad n=0,1,2 \cdots \] Where $[ g(n) ]$ denote the greatest integer that does not exceed $g(n)$.

2022 Thailand Online MO, 10

Let $\mathbb{Q}$ be the set of rational numbers. Determine all functions $f : \mathbb{Q}\to\mathbb{Q}$ satisfying both of the following conditions. [list=disc] [*] $f(a)$ is not an integer for some rational number $a$. [*] For any rational numbers $x$ and $y$, both $f(x + y) - f(x) - f(y)$ and $f(xy) - f(x)f(y)$ are integers. [/list]

2010 Indonesia TST, 2

Find all functions $ f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying \[ f(x^3\plus{}y^3)\equal{}xf(x^2)\plus{}yf(y^2)\] for all real numbers $ x$ and $ y$. [i]Hery Susanto, Malang[/i]

1968 Miklós Schweitzer, 7

For every natural number $ r$, the set of $ r$-tuples of natural numbers is partitioned into finitely many classes. Show that if $ f(r)$ is a function such that $ f(r)\geq 1$ and $ \lim _{r\rightarrow \infty} f(r)\equal{}\plus{}\infty$, then there exists an infinite set of natural numbers that, for all $ r$, contains $ r$-triples from at most $ f(r)$ classes. Show that if $ f(r) \not \rightarrow \plus{}\infty$, then there is a family of partitions such that no such infinite set exists. [i]P. Erdos, A. Hajnal[/i]

1988 National High School Mathematics League, 1

Tags: function
We have three functions. The first one is $y=\phi(x)$. The second one is the inverse function of the first one. The figure of the third funcion is symmetrical to the second one about line $x+y=0$. Then, the third function is $\text{(A)}y=-\phi(x)\qquad\text{(B)}y=-\phi(-x)\qquad\text{(C)}y=-\phi^{-1}(x)\qquad\text{(D)}y=-\phi^{-1}(x)$

2022 Romania EGMO TST, P1

Tags: algebra , function
Determine all functions $f:\mathbb{R}\to\mathbb{R}$ such that all real numbers $x$ and $y$ satisfy \[f(f(x)+y)=f(x^2-y)+4f(x)y.\]

2018 China Team Selection Test, 2

An integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. [quote]For example, 4 can be partitioned in five distinct ways: 4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1[/quote] The number of partitions of n is given by the partition function $p\left ( n \right )$. So $p\left ( 4 \right ) = 5$ . Determine all the positive integers so that $p\left ( n \right )+p\left ( n+4 \right )=p\left ( n+2 \right )+p\left ( n+3 \right )$.

2009 Today's Calculation Of Integral, 485

In the $x$-$y$ plane, for the origin $ O$, given an isosceles triangle $ OAB$ with $ AO \equal{} AB$ such that $ A$ is on the first quadrant and $ B$ is on the $ x$ axis. Denote the area by $ s$. Find the area of the common part of the traingle and the region expressed by the inequality $ xy\leq 1$ to give the area as the function of $ s$.

2010 AMC 12/AHSME, 24

Let $ f(x) \equal{} \log_{10} (\sin (\pi x)\cdot\sin (2\pi x)\cdot\sin (3\pi x) \cdots \sin (8\pi x))$. The intersection of the domain of $ f(x)$ with the interval $ [0,1]$ is a union of $ n$ disjoint open intervals. What is $ n$? $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 22 \qquad \textbf{(E)}\ 36$

2014 Cezar Ivănescu, 2

[b]a)[/b] Give an example of function $ f:\mathbb{R}\longrightarrow\mathbb{R}_{>0 } $ that admits a primitive $ F:\mathbb{R}\longrightarrow\mathbb{R}_{>0 } $ having the property that $ F^e $ is a primitive of $ f^e. $ [b]b)[/b] Prove that there is no derivable function $ g:\mathbb{R}\longrightarrow\mathbb{R} $ that has a primitive $ G:\mathbb{R}\longrightarrow\mathbb{R} $ such that $ e^G $ is a primitive of $ e^g. $

2013 Iran Team Selection Test, 9

Tags: algebra , function
find all functions $f,g:\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that $f$ is increasing and also: $f(f(x)+2g(x)+3f(y))=g(x)+2f(x)+3g(y)$ $g(f(x)+y+g(y))=2x-g(x)+f(y)+y$

2019 Korea USCM, 6

A function $f:[0,\infty)\to[0,\infty)$ is integrable and $$\int_0^\infty f(x)^2 dx<\infty,\quad \int_0^\infty xf(x) dx <\infty$$ Prove the following inequality. $$\left(\int_0^\infty f(x) dx \right)^3 \leq 8\left(\int_0^\infty f(x)^2 dx \right) \left(\int_0^\infty xf(x) dx \right)$$

2016 Romania Team Selection Tests, 2

Determine all $f:\mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ such that $f(m)\geq m$ and $f(m+n) \mid f(m)+f(n)$ for all $m,n\in \mathbb{Z}^+$

1976 AMC 12/AHSME, 25

For a sequence $u_1,u_2\dots,$ define $\Delta^1(u_n)=u_{n+1}-u_n$ and, for all integer $k>1$, $\Delta^k(u_n)=\Delta^1(\Delta^{k-1}(u_n))$. If $u_n=n^3+n$, then $\Delta^k(u_n)=0$ for all $n$ $\textbf{(A) }\text{if }k=1\qquad$ $\textbf{(B) }\text{if }k=2,\text{ but not if }k=1\qquad$ $\textbf{(C) }\text{if }k=3,\text{ but not if }k=2\qquad$ $\textbf{(D) }\text{if }k=4,\text{ but not if }k=3\qquad$ $\textbf{(E) }\text{for no value of }k$

2012 China Northern MO, 6

Prove that\[(1+\frac{1}{3})(1+\frac{1}{3^2})\cdots(1+\frac{1}{3^n})< 2.\]

1989 China National Olympiad, 6

Find all functions $f:(1,+\infty) \rightarrow (1,+\infty)$ that satisfy the following condition: for arbitrary $x,y>1$ and $u,v>0$, inequality $f(x^uy^v)\le f(x)^{\dfrac{1}{4u}}f(y)^{\dfrac{1}{4v}}$ holds.

2012 Iran MO (3rd Round), 2

Suppose $W(k,2)$ is the smallest number such that if $n\ge W(k,2)$, for each coloring of the set $\{1,2,...,n\}$ with two colors there exists a monochromatic arithmetic progression of length $k$. Prove that $W(k,2)=\Omega (2^{\frac{k}{2}})$.

2006 Iran Team Selection Test, 1

Suppose that $p$ is a prime number. Find all natural numbers $n$ such that $p|\varphi(n)$ and for all $a$ such that $(a,n)=1$ we have \[ n|a^{\frac{\varphi(n)}{p}}-1 \]

2012 Today's Calculation Of Integral, 818

For a function $f(x)=x^3-x^2+x$, find the limit $\lim_{n\to\infty} \int_{n}^{2n}\frac{1}{f^{-1}(x)^3+|f^{-1}(x)|}\ dx.$

2008 Federal Competition For Advanced Students, Part 2, 1

Prove the inequality \[ \sqrt {a^{1 \minus{} a}b^{1 \minus{} b}c^{1 \minus{} c}} \le \frac {1}{3} \] holds for all positive real numbers $ a$, $ b$ and $ c$ with $ a \plus{} b \plus{} c \equal{} 1$.