This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2000 Belarus Team Selection Test, 4.1

Find all functions $f ,g,h : R\to R$ such that $f(x+y^3)+g(x^3+y) = h(xy)$ for all $x,y \in R$

2007 QEDMO 4th, 13

Let $n$ and $k$ be integers such that $0\leq k\leq n$. Prove that $\sum_{u=0}^{k}\binom{n+u-1}{u}\binom{n}{k-2u}=\binom{n+k-1}{k}$. Note that we use the following conventions: $\binom{r}{0}=1$ for every integer $r$; $\binom{u}{v}=0$ if $u$ is a nonnegative integer and $v$ is an integer satisfying $v<0$ or $v>u$. Darij

2010 Today's Calculation Of Integral, 563

Determine the pair of constant numbers $ a,\ b,\ c$ such that for a quadratic function $ f(x) \equal{} x^2 \plus{} ax \plus{} b$, the following equation is identity with respect to $ x$. \[ f(x \plus{} 1) \equal{} c\int_0^1 (3x^2 \plus{} 4xt)f'(t)dt\] .

2010 IberoAmerican, 1

There are ten coins a line, which are indistinguishable. It is known that two of them are false and have consecutive positions on the line. For each set of positions, you may ask how many false coins it contains. Is it possible to identify the false coins by making only two of those questions, without knowing the answer to the first question before making the second?

2007 Nicolae Păun, 2

For a given natural number, $ n\ge 2, $ consider two matrices $ A,B\in\mathcal{M}_n(\mathbb{C}) $ that commute and such that $ A $ is invertible and that the function $ M:\mathbb{C}\longrightarrow\mathbb{C} ,M(x)=\det (A+xB) $ is bounded above or below. Prove that $ B^n=0. $ [i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]

2013 ISI Entrance Examination, 3

Let $f:\mathbb R\to\mathbb R$ satisfy \[|f(x+y)-f(x-y)-y|\leq y^2\] For all $(x,y)\in\mathbb R^2.$ Show that $f(x)=\frac x2+c$ where $c$ is a constant.

2009 Today's Calculation Of Integral, 506

Let $ a,\ b$ be the real numbers such that $ 0\leq a\leq b\leq 1$. Find the minimum value of $ \int_0^1 |(x\minus{}a)(x\minus{}b)|\ dx$.

2017 Bulgaria EGMO TST, 1

Let $\mathbb{Q^+}$ denote the set of positive rational numbers. Determine all functions $f: \mathbb{Q^+} \to \mathbb{Q^+}$ that satisfy the conditions \[ f \left( \frac{x}{x+1}\right) = \frac{f(x)}{x+1} \qquad \text{and} \qquad f \left(\frac{1}{x}\right)=\frac{f(x)}{x^3}\] for all $x \in \mathbb{Q^+}.$

2002 AMC 12/AHSME, 20

Tags: function
Let $f$ be a real-valued function such that \[f(x)+2f\left(\dfrac{2002}x\right)=3x\] for all $x>0$. Find $f(2)$. $\textbf{(A) }1000\qquad\textbf{(B) }2000\qquad\textbf{(C) }3000\qquad\textbf{(D) }4000\qquad\textbf{(E) }6000$

2006 Stanford Mathematics Tournament, 2

Find the minimum value of $ 2x^2\plus{}2y^2\plus{}5z^2\minus{}2xy\minus{}4yz\minus{}4x\minus{}2z\plus{}15$ for real numbers $ x$, $ y$, $ z$.

2020 BMT Fall, 5

Let $f:\mathbb{R}^+\to \mathbb{R}^+$ be a function such that for all $x,y \in \mathbb{R}+,\, f(x)f(y)=f(xy)+f\left(\frac{x}{y}\right)$, where $\mathbb{R}^+$ represents the positive real numbers. Given that $f(2)=3$, compute the last two digits of $f\left(2^{2^{2020}}\right)$.

1997 Putnam, 4

Tags: function
Let $G$ be group with identity $e$ and $\phi :G\to G$ be a function such that : \[ \phi(g_1)\cdot \phi(g_2)\cdot \phi(g_3)=\phi(h_1)\cdot \phi(h_2)\cdot \phi(h_3) \] Whenever $g_1\cdot g_2\cdot g_3=e=h_1\cdot h_2\cdot h_3$ Show there exists $a\in G$ such that $\psi(x)=a\phi(x)$ is a homomorphism. (that is $\psi(x\cdot y)=\psi (x)\cdot \psi(y)$ for all $x,y\in G$ )

1999 National Olympiad First Round, 28

Find the number of functions defined on positive real numbers such that $ f\left(1\right) \equal{} 1$ and for every $ x,y\in \Re$, $ f\left(x^{2} y^{2} \right) \equal{} f\left(x^{4} \plus{} y^{4} \right)$. $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \text{Infinitely many}$

2001 Romania National Olympiad, 2

For every rational number $m>0$ we consider the function $f_m:\mathbb{R}\rightarrow\mathbb{R},f_m(x)=\frac{1}{m}x+m$. Denote by $G_m$ the graph of the function $f_m$. Let $p,q,r$ be positive rational numbers. a) Show that if $p$ and $q$ are distinct then $G_p\cap G_q$ is non-empty. b) Show that if $G_p\cap G_q$ is a point with integer coordinates, then $p$ and $q$ are integer numbers. c) Show that if $p,q,r$ are consecutive natural numbers, then the area of the triangle determined by intersections of $G_p,G_q$ and $G_r$ is equal to $1$.

2024 Turkey EGMO TST, 2

Find all functions $f:\mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$ such that the conditions $\quad a) \quad a-b \mid f(a)-f(b)$ for all $a\neq b$ and $a,b \in \mathbb{Z}^{+}$ $\quad b) \quad f(\varphi(a))=\varphi(f(a))$ for all $a \in \mathbb{Z}^{+}$ where $\varphi$ is the Euler's totient function. holds

2010 Romania National Olympiad, 3

Let $f:\mathbb{R}\rightarrow [0,\infty)$. Prove that $f(x+y)\ge (y+1)f(x),\ (\forall)x\in \mathbb{R}$ if and only if the function $g:\mathbb{R}\rightarrow [0,\infty),\ g(x)=e^{-x}f(x),\ (\forall)x\in \mathbb{R}$ is increasing.

2010 Romanian Master of Mathematics, 2

For each positive integer $n$, find the largest real number $C_n$ with the following property. Given any $n$ real-valued functions $f_1(x), f_2(x), \cdots, f_n(x)$ defined on the closed interval $0 \le x \le 1$, one can find numbers $x_1, x_2, \cdots x_n$, such that $0 \le x_i \le 1$ satisfying \[|f_1(x_1)+f_2(x_2)+\cdots f_n(x_n)-x_1x_2\cdots x_n| \ge C_n\] [i]Marko Radovanović, Serbia[/i]

1993 Tournament Of Towns, (377) 5

Does there exist a piecewise linear function $f$ defined on the segment [$-1,1]$ (including the ends) such that $f(f(x)) = -x$ for all x? (A function is called piecewise linear if its graph is the union of a finite set of points and intervals; it may be discontinuous).

2006 MOP Homework, 4

Let $n$ be a positive integer. Solve the system of equations \begin{align*}x_{1}+2x_{2}+\cdots+nx_{n}&= \frac{n(n+1)}{2}\\ x_{1}+x_{2}^{2}+\cdots+x_{n}^{n}&= n\end{align*} for $n$-tuples $(x_{1},x_{2},\ldots,x_{n})$ of nonnegative real numbers.

1995 AIME Problems, 14

In a circle of radius 42, two chords of length 78 intersect at a point whose distance from the center is 18. The two chords divide the interior of the circle into four regions. Two of these regions are bordered by segments of unequal lenghts, and the area of either of them can be expressed uniquley in the form $m\pi-n\sqrt{d},$ where $m, n,$ and $d$ are positive integers and $d$ is not divisible by the square of any prime number. Find $m+n+d.$

1969 Miklós Schweitzer, 3

Let $ f(x)$ be a nonzero, bounded, real function on an Abelian group $ G$, $ g_1,...,g_k$ are given elements of $ G$ and $ \lambda_1,...,\lambda_k$ are real numbers. Prove that if \[ \sum_{i=1}^k \lambda_i f(g_ix) \geq 0\] holds for all $ x \in G$, then \[ \sum_{i=1}^k \lambda_i \geq 0.\] [i]A. Mate[/i]

2018 China Team Selection Test, 6

Let $M,a,b,r$ be non-negative integers with $a,r\ge 2$, and suppose there exists a function $f:\mathbb{Z}\rightarrow\mathbb{Z}$ satisfying the following conditions: (1) For all $n\in \mathbb{Z}$, $f^{(r)}(n)=an+b$ where $f^{(r)}$ denotes the composition of $r$ copies of $f$ (2) For all $n\ge M$, $f(n)\ge 0$ (3) For all $n>m>M$, $n-m|f(n)-f(m)$ Show that $a$ is a perfect $r$-th power.

2011 India National Olympiad, 6

Find all functions $f:\mathbb{R}\to \mathbb R$ satisfying \[f(x+y)f(x-y)=\left(f(x)+f(y)\right)^2-4x^2f(y),\] For all $x,y\in\mathbb R$.

2022 Junior Macedonian Mathematical Olympiad, P2

Let $a$, $b$ and $c$ be positive real numbers such that $a+b+c=3$. Prove the inequality $$\frac{a^3}{a^2+1}+\frac{b^3}{b^2+1}+\frac{c^3}{c^2+1} \geq \frac{3}{2}.$$ [i]Proposed by Anastasija Trajanova[/i]

2010 Romania National Olympiad, 1

Let $f:\mathbb{R}\to\mathbb{R}$ be a monotonic function and $F:\mathbb{R}\to\mathbb{R}$ given by \[F(x)=\int_0^xf(t)\ \text{d}t.\] Prove that if $F$ has a finite derivative, then $f$ is continuous. [i]Dorin Andrica & Mihai Piticari[/i]