Found problems: 95
1991 Arnold's Trivium, 38
Calculate the integral of the Gaussian curvature of the surface
\[z^4+(x^2+y^2-1)(2x^2+3y^2-1)=0\]
1991 Arnold's Trivium, 12
Find the flux of the vector field $\overrightarrow{r}/r^3$ through the surface
\[(x-1)^2+y^2+z^2=2\]
1998 Gauss, 22
Each time a bar of soap is used, its volume decreases by $10\%$.
What is the minimum number of times
a new bar would have to be used so that less than one-half its volume remains?
$\textbf{(A)}\ 5 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9$
2012 IMO Shortlist, N8
Prove that for every prime $p>100$ and every integer $r$, there exist two integers $a$ and $b$ such that $p$ divides $a^2+b^5-r$.
2013 Stanford Mathematics Tournament, 10
Given a complex number $z$ such that $z^{13}=1$, find all possible value of $z+z^3+z^4+z^9+z^{10}+z^{12}$.
1999 Gauss, 17
In a “Fibonacci” sequence of numbers, each term beginning with the third, is the sum of the previous two terms. The first number in such a sequence is 2 and the third is 9. What is the eighth term in the sequence?
$\textbf{(A)}\ 34 \qquad \textbf{(B)}\ 36 \qquad \textbf{(C)}\ 107 \qquad \textbf{(D)}\ 152 \qquad \textbf{(E)}\ 245$
1957 AMC 12/AHSME, 45
If two real numbers $ x$ and $ y$ satisfy the equation $ \frac{x}{y} \equal{} x \minus{} y$, then:
$ \textbf{(A)}\ {x \ge 4}\text{ and }{x \le 0}\qquad \\
\textbf{(B)}\ {y}\text{ can equal }{1}\qquad \\
\textbf{(C)}\ \text{both }{x}\text{ and }{y}\text{ must be irrational}\qquad \\
\textbf{(D)}\ {x}\text{ and }{y}\text{ cannot both be integers}\qquad \\
\textbf{(E)}\ \text{both }{x}\text{ and }{y}\text{ must be rational}$
2005 Romania National Olympiad, 1
Let $ABCD$ be a convex quadrilateral with $AD\not\parallel BC$. Define the points $E=AD \cap BC$ and $I = AC\cap BD$. Prove that the triangles $EDC$ and $IAB$ have the same centroid if and only if $AB \parallel CD$ and $IC^{2}= IA \cdot AC$.
[i]Virgil Nicula[/i]
2005 Iran MO (3rd Round), 2
We define a relation between subsets of $\mathbb R ^n$. $A \sim B\Longleftrightarrow$ we can partition $A,B$ in sets $A_1,\dots,A_n$ and $B_1,\dots,B_n$(i.e $\displaystyle A=\bigcup_{i=1} ^n A_i,\ B=\bigcup_{i=1} ^n B_i,
A_i\cap A_j=\emptyset,\ B_i\cap B_j=\emptyset$) and $A_i\simeq B_i$.
Say the the following sets have the relation $\sim$ or not ?
a) Natural numbers and composite numbers.
b) Rational numbers and rational numbers with finite digits in base 10.
c) $\{x\in\mathbb Q|x<\sqrt 2\}$ and $\{x\in\mathbb Q|x<\sqrt 3\}$
d) $A=\{(x,y)\in\mathbb R^2|x^2+y^2<1\}$ and $A\setminus \{(0,0)\}$
1999 Gauss, 7
If the numbers $\dfrac{4}{5},81\%$ and $0.801$ are arranged from smallest to largest, the correct order is
$\textbf{(A)}\ \dfrac{4}{5},81\%,0.801 \qquad \textbf{(B)}\ 81\%,0.801,\dfrac{4}{5} \qquad \textbf{(C)}\ 0.801,\dfrac{4}{5},81\% \qquad \textbf{(D)}\ 81\%,\dfrac{4}{5},0.801 \qquad \textbf{(E)}\ \dfrac{4}{5},0.801,81\%$
1991 Arnold's Trivium, 18
Calculate
\[\int\cdots\int \exp\left(-\sum_{1\le i\le j\le n}x_ix_j\right)dx_1\cdots dx_n\]
2024 Korea Junior Math Olympiad (First Round), 13.
Find the number of positive integer n, which follows the following
$ \bigstar $ $ n=[\frac{m^3}{2024}] $ $n$ has a positive integer $m$ that follows this equation ($ m \le 1000$)
1998 Gauss, 25
Two natural numbers, $p$ and $q$, do not end in zero. The product of any pair, p and q, is a power of 10
(that is, $10, 100, 1000, 10 000$ , ...). If $p >q$, the last digit of $p – q$ cannot be
$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 7 \qquad \textbf{(E)}\ 9$
PEN C Problems, 2
The positive integers $a$ and $b$ are such that the numbers $15a+16b$ and $16a-15b$ are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares?
2005 China Team Selection Test, 2
Let $n$ be a positive integer, and $x$ be a positive real number. Prove that $$\sum_{k=1}^{n} \left( x \left[\frac{k}{x}\right] - (x+1)\left[\frac{k}{x+1}\right]\right) \leq n,$$ where $[x]$ denotes the largest integer not exceeding $x$.
1998 Gauss, 11
Kalyn cut rectangle R from a sheet of paper and then cut figure S from R. All the cuts were made
parallel to the sides of the original rectangle. In comparing R to S
(A) the area and perimeter both decrease
(B) the area decreases and the perimeter increases
(C) the area and perimeter both increase
(D) the area increases and the perimeter decreases
(E) the area decreases and the perimeter stays the same
1998 Gauss, 2
The number $4567$ is tripled. The ones digit (units digit) in the resulting number is
$\textbf{(A)}\ 5 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 1$
2005 China Team Selection Test, 2
Let $n$ be a positive integer, and $x$ be a positive real number. Prove that $$\sum_{k=1}^{n} \left( x \left[\frac{k}{x}\right] - (x+1)\left[\frac{k}{x+1}\right]\right) \leq n,$$ where $[x]$ denotes the largest integer not exceeding $x$.
1998 Gauss, 13
The pattern of figures $\triangle$ $ \bullet$ $ \square$ $\blacktriangle$ $\circ$ is repeated in the sequence
$$\triangle,\bullet, \square, \blacktriangle, \circ, \triangle, \bullet, \square, \blacktriangle, \circ$$
The 214th figure in the sequence is
(A) $\triangle$ (B) $\bullet$ (C) $\square$ (D) $\blacktriangle$ (E) $\circ$
2010 Contests, 2
Bisectors $AA_1$ and $BB_1$ of a right triangle $ABC \ (\angle C=90^\circ )$ meet at a point $I.$ Let $O$ be the circumcenter of triangle $CA_1B_1.$ Prove that $OI \perp AB.$
1999 Gauss, 1
$1999-999+99$ equals
$\textbf{(A)}\ 901 \qquad \textbf{(B)}\ 1099 \qquad \textbf{(C)}\ 1000 \qquad \textbf{(D)}\ 199 \qquad \textbf{(E)}\ 99$
2018 AMC 12/AHSME, 9
What is \[ \sum^{100}_{i=1} \sum^{100}_{j=1} (i+j) ? \]
$
\textbf{(A) }100,100 \qquad
\textbf{(B) }500,500\qquad
\textbf{(C) }505,000 \qquad
\textbf{(D) }1,001,000 \qquad
\textbf{(E) }1,010,000 \qquad
$
2012 IFYM, Sozopol, 4
Given distinct prime numbers $p$ and $q$ and a natural number $n \geq 3$, find all $a \in \mathbb{Z}$ such that the polynomial $f(x) = x^n + ax^{n-1} + pq$ can be factored into 2 integral polynomials of degree at least 1.
1999 Gauss, 11
The floor of a rectangular room is covered with square tiles. The room is 10 tiles long and 5 tiles wide. The number of tiles that touch the walls of the room is
$\textbf{(A)}\ 26 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 34 \qquad \textbf{(D)}\ 46 \qquad \textbf{(E)}\ 50$
2014 Vietnam National Olympiad, 1
Given a circle $(O)$ and two fixed points $B,C$ on $(O),$ and an arbitrary point $A$ on $(O)$ such that the triangle $ABC$ is acute. $M$ lies on ray $AB,$ $N$ lies on ray $AC$ such that $MA=MC$ and $NA=NB.$ Let $P$ be the intersection of $(AMN)$ and $(ABC),$ $P\ne A.$ $MN$ intersects $BC$ at $Q.$
a) Prove that $A,P,Q$ are collinear.
b) $D$ is the midpoint of $BC.$ Let $K$ be the intersection of $(M,MA)$ and $(N,NA),$ $K\ne A.$ $d$ is the line passing through $A$ and perpendicular to $AK.$ $E$ is the intersection of $d$ and $BC.$ $(ADE)$ intersects $(O)$ at $F,$ $F\ne A.$ Prove that $AF$ passes through a fixed point.