Found problems: 1581
2020 Vietnam National Olympiad, 4
Let a non-isosceles acute triangle ABC with the circumscribed cycle (O) and the orthocenter H. D, E, F are the reflection of O in the lines BC, CA and AB.
a) $H_a$ is the reflection of H in BC, A' is the reflection of A at O and $O_a$ is the center of (BOC). Prove that $H_aD$ and OA' intersect on (O).
b) Let X is a point satisfy AXDA' is a parallelogram. Prove that (AHX), (ABF), (ACE) have a comom point different than A
2012 NIMO Problems, 7
Point $P$ lies in the interior of rectangle $ABCD$ such that $AP + CP = 27$, $BP - DP = 17$, and $\angle DAP \cong \angle DCP$. Compute the area of rectangle $ABCD$.
[i]Proposed by Aaron Lin[/i]
1982 IMO Longlists, 11
A rectangular pool table has a hole at each of three of its corners. The lengths of sides of the table are the real numbers $a$ and $b$. A billiard ball is shot from the fourth corner along its angle bisector. The ball falls in one of the holes. What should the relation between $a$ and $b$ be for this to happen?
2014 Taiwan TST Round 1, 3
Let $ABC$ be a triangle with incenter $I$, and suppose the incircle is tangent to $CA$ and $AB$ at $E$ and $F$. Denote by $G$ and $H$ the reflections of $E$ and $F$ over $I$. Let $Q$ be the intersection of $BC$ with $GH$, and let $M$ be the midpoint of $BC$. Prove that $IQ$ and $IM$ are perpendicular.
2008 AMC 12/AHSME, 25
A sequence $ (a_1,b_1)$, $ (a_2,b_2)$, $ (a_3,b_3)$, $ \ldots$ of points in the coordinate plane satisfies \[ (a_{n \plus{} 1}, b_{n \plus{} 1}) \equal{} (\sqrt {3}a_n \minus{} b_n, \sqrt {3}b_n \plus{} a_n)\hspace{3ex}\text{for}\hspace{3ex} n \equal{} 1,2,3,\ldots.\] Suppose that $ (a_{100},b_{100}) \equal{} (2,4)$. What is $ a_1 \plus{} b_1$?
$ \textbf{(A)}\\minus{} \frac {1}{2^{97}} \qquad
\textbf{(B)}\\minus{} \frac {1}{2^{99}} \qquad
\textbf{(C)}\ 0 \qquad
\textbf{(D)}\ \frac {1}{2^{98}} \qquad
\textbf{(E)}\ \frac {1}{2^{96}}$
2011 Baltic Way, 11
Let $AB$ and $CD$ be two diameters of the circle $C$. For an arbitrary point $P$ on $C$, let $R$ and $S$ be the feet of the perpendiculars from $P$ to $AB$ and $CD$, respectively. Show that the length of $RS$ is independent of the choice of $P$.
2023 Ecuador NMO (OMEC), 2
Let $ABCD$ a cyclic convex quadrilateral. There is a line $l$ parallel to $DC$ containing $A$. Let $P$ a point on $l$ closer to $A$ than to $B$. Let $B'$ the reflection of $B$ over the midpoint of $AD$. Prove that $\angle B'AP = \angle BAC$
2006 Baltic Way, 12
Let $ABC$ be a triangle, let $B_{1}$ be the midpoint of the side $AB$ and $C_{1}$ the midpoint of the side $AC$. Let $P$ be the point of intersection, other than $A$, of the circumscribed circles around the triangles $ABC_{1}$ and $AB_{1}C$. Let $P_{1}$ be the point of intersection, other than $A$, of the line $AP$ with the circumscribed circle around the triangle $AB_{1}C_{1}$. Prove that $2AP=3AP_{1}$.
2006 All-Russian Olympiad, 4
Consider an isosceles triangle $ABC$ with $AB=AC$, and a circle $\omega$ which is tangent to the sides $AB$ and $AC$ of this triangle and intersects the side $BC$ at the points $K$ and $L$. The segment $AK$ intersects the circle $\omega$ at a point $M$ (apart from $K$). Let $P$ and $Q$ be the reflections of the point $K$ in the points $B$ and $C$, respectively. Show that the circumcircle of triangle $PMQ$ is tangent to the circle $\omega$.
2003 Rioplatense Mathematical Olympiad, Level 3, 3
An $8\times 8$ chessboard is to be tiled (i.e., completely covered without overlapping) with pieces of the following shapes:
[asy]
unitsize(.6cm);
draw(unitsquare,linewidth(1));
draw(shift(1,0)*unitsquare,linewidth(1));
draw(shift(2,0)*unitsquare,linewidth(1));
label("\footnotesize $1\times 3$ rectangle",(1.5,0),S);
draw(shift(8,1)*unitsquare,linewidth(1));
draw(shift(9,1)*unitsquare,linewidth(1));
draw(shift(10,1)*unitsquare,linewidth(1));
draw(shift(9,0)*unitsquare,linewidth(1));
label("\footnotesize T-shaped tetromino",(9.5,0),S);
[/asy] The $1\times 3$ rectangle covers exactly three squares of the chessboard, and the T-shaped tetromino covers exactly four squares of the chessboard. [list](a) What is the maximum number of pieces that can be used?
(b) How many ways are there to tile the chessboard using this maximum number of pieces?[/list]
1993 Baltic Way, 20
Let $ \mathcal Q$ be a unit cube. We say that a tetrahedron is [b]good[/b] if all its edges are equal and all of its vertices lie on the boundary of $ \mathcal Q$. Find all possible volumes of good tetrahedra.
2014 AMC 12/AHSME, 20
In $\triangle BAC$, $\angle BAC=40^\circ$, $AB=10$, and $AC=6$. Points $D$ and $E$ lie on $\overline{AB}$ and $\overline{AC}$ respectively. What is the minimum possible value of $BE+DE+CD$?
$\textbf{(A) }6\sqrt 3+3\qquad
\textbf{(B) }\dfrac{27}2\qquad
\textbf{(C) }8\sqrt 3\qquad
\textbf{(D) }14\qquad
\textbf{(E) }3\sqrt 3+9\qquad$
2001 Irish Math Olympiad, 2
Three hoops are arranged concentrically as in the diagram. Each hoop is threaded with $ 20$ beads, $ 10$ of which are black and $ 10$ are white. On each hoop the positions of the beads are labelled $ 1$ through $ 20$ as shown. We say there is a match at position $ i$ if all three beads at position $ i$ have the same color. We are free to slide beads around a hoop, not breaking the hoop. Show that it is always possible to move them into a configuration involving no less than $ 5$ matches.
2007 All-Russian Olympiad, 3
Two players by turns draw diagonals in a regular $(2n+1)$-gon ($n>1$). It is forbidden to draw a diagonal, which was already drawn, or intersects an odd number of already drawn diagonals. The player, who has no legal move, loses. Who has a winning strategy?
[i]K. Sukhov[/i]
2009 Romania Team Selection Test, 3
Let $ ABC$ be a non-isosceles triangle, in which $ X,Y,$ and $ Z$ are the tangency points of the incircle of center $ I$ with sides $ BC,CA$ and $ AB$ respectively. Denoting by $ O$ the circumcircle of $ \triangle{ABC}$, line $ OI$ meets $ BC$ at a point $ D.$ The perpendicular dropped from $ X$ to $ YZ$ intersects $ AD$ at $ E$. Prove that $ YZ$ is the perpendicular bisector of $ [EX]$.
2005 Italy TST, 2
The circle $\Gamma$ and the line $\ell$ have no common points. Let $AB$ be the diameter of $\Gamma$ perpendicular to $\ell$, with $B$ closer to $\ell$ than $A$. An arbitrary point $C\not= A$, $B$ is chosen on $\Gamma$. The line $AC$ intersects $\ell$ at $D$. The line $DE$ is tangent to $\Gamma$ at $E$, with $B$ and $E$ on the same side of $AC$. Let $BE$ intersect $\ell$ at $F$, and let $AF$ intersect $\Gamma$ at $G\not= A$. Let $H$ be the reflection of $G$ in $AB$. Show that $F,C$, and $H$ are collinear.
2011 Brazil Team Selection Test, 1
Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$
[i]Proposed by Christopher Bradley, United Kingdom[/i]
2022 Indonesia Regional, 4
Suppose $ABC$ is a triangle with circumcenter $O$. Point $D$ is the reflection of $A$ with respect to $BC$. Suppose $\ell$ is the line which is parallel to $BC$ and passes through $O$. The line through $B$ and parallel to $CD$ meets $\ell$ at $B_1$. Lines $CB_1$ and $BD$ intersect at point $B_2$. The line through $C$ parallel to $BD$ and $\ell$ meet at $C_1$. Finally, $BC_1$ and $CD$ intersects at point $C_2$. Prove that points $A, B_2, C_2, D$ lie on a circle.
2009 Baltic Way, 12
In a quadrilateral $ABCD$ we have $AB||CD$ and $AB=2CD$. A line $\ell$ is perpendicular to $CD$ and contains the point $C$. The circle with centre $D$ and radius $DA$ intersects the line $\ell$ at points $P$ and $Q$. Prove that $AP\perp BQ$.
Brazil L2 Finals (OBM) - geometry, 2000.3
A rectangular piece of paper has top edge $AD$. A line $L$ from $A$ to the bottom edge makes an angle $x$ with the line $AD$. We want to trisect $x$. We take $B$ and $C$ on the vertical ege through $A$ such that $AB = BC$. We then fold the paper so that $C$ goes to a point $C'$ on the line $L$ and $A$ goes to a point $A'$ on the horizontal line through $B$. The fold takes $B$ to $B'$. Show that $AA'$ and $AB'$ are the required trisectors.
2011 Iran MO (3rd Round), 4
A variant triangle has fixed incircle and circumcircle. Prove that the radical center of its three excircles lies on a fixed circle and the circle's center is the midpoint of the line joining circumcenter and incenter.
[i]proposed by Masoud Nourbakhsh[/i]
2013 Romanian Master of Mathematics, 4
Suppose two convex quadrangles in the plane $P$ and $P'$, share a point $O$ such that, for every line $l$ trough $O$, the segment along which $l$ and $P$ meet is longer then the segment along which $l$ and $P'$ meet. Is it possible that the ratio of the area of $P'$ to the area of $P$ is greater then $1.9$?
2017 Baltic Way, 11
Let $H$ and $I$ be the orthocenter and incenter, respectively, of an acute-angled triangle $ABC$. The circumcircle of the triangle $BCI$ intersects the segment $AB$ at the point $P$ different from $B$. Let $K$ be the projection of $H$ onto $AI$ and $Q$ the reflection of $P$ in $K$. Show that $B$, $H$ and $Q$ are collinear.
[i]Proposed by Mads Christensen, Denmark[/i]
2013 China Team Selection Test, 1
The quadrilateral $ABCD$ is inscribed in circle $\omega$. $F$ is the intersection point of $AC$ and $BD$. $BA$ and $CD$ meet at $E$. Let the projection of $F$ on $AB$ and $CD$ be $G$ and $H$, respectively. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. If the circumcircle of $\triangle MNG$ only meets segment $BF$ at $P$, and the circumcircle of $\triangle MNH$ only meets segment $CF$ at $Q$, prove that $PQ$ is parallel to $BC$.
2018 Iran MO (1st Round), 21
The point $P$ is chosen inside or on the equilateral triangle $ABC$ of side length $1$. The reflection of $P$ with respect to $AB$ is $K$, the reflection of $K$ about $BC$ is $M$, and the reflection of $M$ with respect to $AC$ is $N$. What is the maximum length of $NP$?
$\textbf{(A)}\ 2\sqrt 3\qquad\textbf{(B)}\ \sqrt 3\qquad\textbf{(C)}\ \frac{\sqrt 3}{2} \qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 1$