This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Kyiv City MO Juniors 2003+ geometry, 2022.9.3

Tags: geometry
Let $AL$ be the inner bisector of triangle $ABC$. The circle centered at $B$ with radius $BL$ meets the ray $AL$ at points $L$ and $E$, and the circle centered at $C$ with radius $CL$ meets the ray $AL$ at points $L$ and $D$. Show that $AL^2 = AE\times AD$. [i](Proposed by Mykola Moroz)[/i]

1968 Leningrad Math Olympiad, grade 6

[b]6.1[/b] The student bought a briefcase, a fountain pen and a book. If the briefcase cost 5 times cheaper, the fountain pen was 2 times cheaper, and the book was 2 1/2 times cheaper cheaper, then the entire purchase would cost 2 rubles. If the briefcase was worth 2 times cheaper, a fountain pen is 4 times cheaper, and a book is 3 times cheaper, then the whole the purchase would cost 3 rubles. How much does it really cost? ´ [b]6.2.[/b] Which number is greater: $$\underbrace{888...88}_{19 \, digits} \cdot \underbrace{333...33}_{68 \, digits} \,\,\, or \,\,\, \underbrace{444...44}_{19 \, digits} \cdot \underbrace{666...67}_{68 \, digits} \, ?$$ [b]6.3[/b] Distance between Luga and Volkhov 194 km, between Volkhov and Lodeynoye Pole 116 km, between Lodeynoye Pole and Pskov 451 km, between Pskov and Luga 141 km. What is the distance between Pskov and Volkhov? [b]6.4 [/b] There are $4$ objects in pairs of different weights. How to use a pan scale without weights Using five weighings, arrange all these objects in order of increasing weights? [b]6.5 [/b]. Several teams took part in the volleyball tournament. Team A is considered stronger than team B if either A beat B or there is a team C such that A beat C, and C beat B. Prove that if team T is the winner of the tournament, then it is the strongest the rest of the teams. [b]6.6 [/b] In task 6.1, determine what is more expensive: a briefcase or a fountain pen. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988084_1968_leningrad_math_olympiad]here[/url].

2010 ELMO Shortlist, 4

Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$. [i]Amol Aggarwal.[/i]

2023 USAJMO, 2

Tags: geometry
In an acute triangle $ABC$, let $M$ be the midpoint of $\overline{BC}$. Let $P$ be the foot of the perpendicular from $C$ to $AM$. Suppose that the circumcircle of triangle $ABP$ intersects line $BC$ at two distinct points $B$ and $Q$. Let $N$ be the midpoint of $\overline{AQ}$. Prove that $NB=NC$. [i]Proposed by Holden Mui[/i]

2005 Baltic Way, 11

Let the points $D$ and $E$ lie on the sides $BC$ and $AC$, respectively, of the triangle $ABC$, satisfying $BD=AE$. The line joining the circumcentres of the triangles $ADC$ and $BEC$ meets the lines $AC$ and $BC$ at $K$ and $L$, respectively. Prove that $KC=LC$.

2008 China Team Selection Test, 1

Given a rectangle $ ABCD,$ let $ AB \equal{} b, AD \equal{} a ( a\geq b),$ three points $ X,Y,Z$ are put inside or on the boundary of the rectangle, arbitrarily. Find the maximum of the minimum of the distances between any two points among the three points. (Denote it by $ a,b$)

Kvant 2020, M2631

Tags: geometry
There is a convex quadrangle $ABCD$ such that no three of its sides can form a triangle. Prove that: [list=a] [*]one of its angles is not greater than $60^\circ{}$; [*]one of its angles is at least $120^\circ$. [/list] [i]Maxim Didin[/i]

2008 Austria Beginners' Competition, 4

Let $ABC$ be an acute-angled triangle with the property that the bisector of $\angle BAC$, the altitude through $B$ and the perpendicular bisector of $AB$ intersect in one point. Determine the angle $\alpha = \angle BAC$.

1959 Polish MO Finals, 2

In an equilateral triangle $ ABC $, point $ O $ is chosen and perpendiculars $ OM $, $ ON $, $ OP $ are dropped to the sides $ BC $, $ CA $, $ AB $, respectively. Prove that the sum of the segments $ AP $, $ BM $, $ CN $ does not depend on the position of point $ O $.

2021 Taiwan TST Round 2, G

Let $ABCD$ be a convex quadrilateral with pairwise distinct side lengths such that $AC\perp BD$. Let $O_1,O_2$ be the circumcenters of $\Delta ABD, \Delta CBD$, respectively. Show that $AO_2, CO_1$, the Euler line of $\Delta ABC$ and the Euler line of $\Delta ADC$ are concurrent. (Remark: The [i]Euler line[/i] of a triangle is the line on which its circumcenter, centroid, and orthocenter lie.) [i]Proposed by usjl[/i]

Ukrainian TYM Qualifying - geometry, I.7

Given a natural number $n> 3$. On the plane are considered convex $n$ - gons $F_1$ and $F_2$ such that on each side of $F_1$ lies one vertex of $F_2$ and no two vertices $F_1$ and $F_2$ coincide. For each $n$, determine the limits of the ratio of the areas of the polygons $F_1$ and $F_2$. For each $n$, determine the range of the areas of the polygons $F_1$ and $F_2$, if $F_1$ is a regular $n$-gon. Determine the set of values of this value for other partial cases of the polygon $F_1$.

2021 Girls in Math at Yale, Tiebreaker

[b]p1.[/b] In their class Introduction to Ladders at Greendale Community College, Jan takes four tests. They realize that their test scores in chronological order form a strictly increasing arithmetic progression with integer terms, and that the average of those scores is an integer greater than or equal to $94$. How many possible combinations of test scores could they have had? (Test scores at Greendale range between $0$ and $100$, inclusive.) [b]p2.[/b] Suppose that $A$ and $B$ are digits between $1$ and $9$ such that $$0.\overline{ABABAB...}+ B \cdot (0.\overline{AAA...}) = A \cdot (0.\overline{B1B1B1...}) + 1$$ Find the sum of all possible values of $10A + B$. [b]p3.[/b] Let $ABC$ be an isosceles right triangle with $m\angle ABC = 90^o$. Let $D$ and $E$ lie on segments $\overline{AC}$ and $\overline{BC}$, respectively, such that triangles $\vartriangle ADB$ and $\vartriangle CDE$ are similar and $DE =EB$. If $\frac{AC}{AD} = 1 +\frac{\sqrt{a}}{b}$ with $a$, $b$ positive integers and $a$ squarefree, then find $a + b$. [b]p4.[/b] Five bowling pins $P_1, P_2, ..., P_5$ are lined up in a row. Each turn, Jemma picks a pin at random from the standing pins, and throws a bowling ball at that pin; that pin and each pin directly adjacent to it are knocked down. If the expected value of the number of turns Jemma will take to knock down all the pins is $\frac{a}{b}$ where $a$ and $b$ are relatively prime, find $a + b$. (Pins $P_i$ and $P_j$ are adjacent if and only if $|i - j| = 1$.) [b]p5.[/b] How many terms in the expansion of $$(1 + x + x^2 + x^3 +... + x^{2021})(1 + x^2 + x^4 + x^6 + ... + x^{4042})$$ have coeffcients equal to $1011$? [b]p6.[/b] Suppose $f(x)$ is a monic quadratic polynomial with distinct nonzero roots $p$ and $q$, and suppose $g(x)$ is a monic quadratic polynomial with roots $p + \frac{1}{q}$ and $q + \frac{1}{p}$ . If we are given that $g(-1) = 1$ and $f(0)\ne -1$, then there exists some real number $r$ that must be a root of $f(x)$. Find $r$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 NZMOC Camp Selection Problems, 3

Let $ABC$ be an acute angled triangle. The arc between $A$ and $B$ of the circumcircle of $ABC$ is reflected through the line $AB$, and the arc between $A$ and $C$ of the circumcircle of $ABC$ is reflected over the line $AC$. Obviously these two reflected arcs intersect at the point $A$. Prove that they also intersect at another point inside the triangle $ABC$.

1982 Tournament Of Towns, (028) 2

Does there exist a polyhedron (not necessarily convex) which could have the following complete list of edges? $AB, AC, BC, BD, CD, DE, EF, EG, FG, FH, GH, AH$. [img]http://1.bp.blogspot.com/-wTdNfQHG5RU/XVk1Bf4wpqI/AAAAAAAAKhA/8kc6u9KqOgg_p1CXim2LZ1ANFXFiWgnYACK4BGAYYCw/s1600/TOT%2B1982%2BAutum%2BS2.png[/img]

2023 OMpD, 4

Let $ABC$ be a scalene acute triangle with circumcenter $O$. Let $K$ be a point on the side $\overline{BC}$. Define $M$ as the second intersection of $\overleftrightarrow{OK}$ with the circumcircle of $BOC$. Let $L$ be the reflection of $K$ by $\overleftrightarrow{AC}$. Show that the circumcircles of the triangles $LCM$ and $ABC$ are tangent if, and only if, $\overline{AK} \perp \overline{BC}$.

2011 Kyrgyzstan National Olympiad, 1

Tags: geometry
For a given chord $MN$ of a circle discussed the triangle $ABC$, whose base is the diameter $AB$ of this circle,which do not intersect the $MN$, and the sides $AC$ and $BC$ pass through the ends of $M$ and $N$ of the chord $MN$. Prove that the heights of all such triangles $ABC$ drawn from the vertex $C$ to the side $AB$, intersect at one point.

2016 PUMaC Geometry A, 6

Tags: geometry
In isosceles triangle $ABC$ with base $BC$, let $M$ be the midpoint of $BC$. Let $P$ be the intersection of the circumcircle of $\vartriangle ACM$ with the circle with center $B$ passing through $M$, such that $P \ne M$. If $\angle BPC = 135^o$, then $\frac{CP}{AP}$ can be written as $a +\sqrt{b}$ for positive integers $a$ and $b$, where $b$ is not divisible by the square of any prime. Find $a + b$.

2011 Mexico National Olympiad, 6

Tags: geometry
Let $\mathcal{C}_1$ and $\mathcal{C}_2$ be two circumferences intersecting at points $A$ and $B$. Let $C$ be a point on line $AB$ such that $B$ lies between $A$ and $C$. Let $P$ and $Q$ be points on $\mathcal{C}_1$ and $\mathcal{C}_2$ respectively such that $CP$ and $CQ$ are tangent to $\mathcal{C}_1$ and $\mathcal{C}_2$ respectively, $P$ is not inside $\mathcal{C}_2$ and $Q$ is not inside $\mathcal{C}_1$. Line $PQ$ cuts $\mathcal{C}_1$ at $R$ and $\mathcal{C}_2$ at $S$, both points different from $P$, $Q$ and $B$. Suppose $CR$ cuts $\mathcal{C}_1$ again at $X$ and $CS$ cuts $\mathcal{C}_2$ again at $Y$. Let $Z$ be a point on line $XY$. Prove $SZ$ is parallel to $QX$ if and only if $PZ$ is parallel to $RX$.

2023 ISI Entrance UGB, 3

In $\triangle ABC$, consider points $D$ and $E$ on $AC$ and $AB$, respectively, and assume that they do not coincide with any of the vertices $A$, $B$, $C$. If the segments $BD$ and $CE$ intersect at $F$, consider areas $w$, $x$, $y$, $z$ of the quadrilateral $AEFD$ and the triangles $BEF$, $BFC$, $CDF$, respectively. [list=a] [*] Prove that $y^2 > xz$. [*] Determine $w$ in terms of $x$, $y$, $z$. [/list] [asy] import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(12); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -2.8465032978885407, xmax = 9.445649196374966, ymin = -1.7618066305534972, ymax = 4.389732795464592; /* image dimensions */ draw((3.8295013012181283,2.816337276198864)--(-0.7368327629589799,-0.5920813291311117)--(5.672613975760373,-0.636902634996282)--cycle, linewidth(0.5)); /* draw figures */ draw((3.8295013012181283,2.816337276198864)--(-0.7368327629589799,-0.5920813291311117), linewidth(0.5)); draw((-0.7368327629589799,-0.5920813291311117)--(5.672613975760373,-0.636902634996282), linewidth(0.5)); draw((5.672613975760373,-0.636902634996282)--(3.8295013012181283,2.816337276198864), linewidth(0.5)); draw((-0.7368327629589799,-0.5920813291311117)--(4.569287648059735,1.430279997142299), linewidth(0.5)); draw((5.672613975760373,-0.636902634996282)--(1.8844000180622977,1.3644681598392678), linewidth(0.5)); label("$y$",(2.74779188172294,0.23771684184669772),SE*labelscalefactor); label("$w$",(3.2941097703568736,1.8657441499758196),SE*labelscalefactor); label("$x$",(1.6660824622277512,1.0025618859342047),SE*labelscalefactor); label("$z$",(4.288408327670633,0.8168138037986672),SE*labelscalefactor); /* dots and labels */ dot((3.8295013012181283,2.816337276198864),dotstyle); label("$A$", (3.8732067323088435,2.925600853925651), NE * labelscalefactor); dot((-0.7368327629589799,-0.5920813291311117),dotstyle); label("$B$", (-1.1,-0.7565817154670613), NE * labelscalefactor); dot((5.672613975760373,-0.636902634996282),dotstyle); label("$C$", (5.763466626982254,-0.7784344310124186), NE * labelscalefactor); dot((4.569287648059735,1.430279997142299),dotstyle); label("$D$", (4.692683565259744,1.5051743434774234), NE * labelscalefactor); dot((1.8844000180622977,1.3644681598392678),dotstyle); label("$E$", (1.775346039954538,1.4942479857047448), NE * labelscalefactor); dot((2.937230516274804,0.8082418657164665),linewidth(4.pt) + dotstyle); label("$F$", (2.889834532767763,0.954), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]

2011 IFYM, Sozopol, 2

On side $AB$ of $\Delta ABC$ is chosen point $M$. A circle is tangent internally to the circumcircle of $\Delta ABC$ and segments $MB$ and $MC$ in points $P$ and $Q$ respectively. Prove that the center of the inscribed circle of $\Delta ABC$ lies on line $PQ$.

1998 AMC 8, 20

Let $PQRS$ be a square piece of paper. $P$ is folded onto $R$ and then $Q$ is folded onto $S$. The area of the resulting figure is 9 square inches. Find the perimeter of square $PQRS$. [asy] draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); label("$P$",(0,2),SE); label("$Q$",(2,2),SW); label("$R$",(2,0),NW); label("$S$",(0,0),NE);[/asy] $ \text{(A)}\ 9\qquad\text{(B)}\ 16\qquad\text{(C)}\ 18\qquad\text{(D)}\ 24\qquad\text{(E)}\ 36 $

2004 Bosnia and Herzegovina Junior BMO TST, 5

In the isosceles triangle $ABC$ ($AC = BC$), $AB =\sqrt3$ and the altitude $CD =\sqrt2$. Let $E$ and $F$ be the midpoints of $BC$ and $DB$, respectively and $G$ be the intersection of $AE$ and $CF$. Prove that $D$ belongs to the angle bisector of $\angle AGF$.

1949 Moscow Mathematical Olympiad, 170

What is a centrally symmetric polygon of greatest area one can inscribe in a given triangle?

2025 Romania Team Selection Tests, P2

Tags: incenter , geometry
Let $ABC$ be a scalene acute triangle with incentre $I{}$ and circumcentre $O{}$. Let $AI$ cross $BC$ at $D$. On circle $ABC$, let $X$ and $Y$ be the mid-arc points of $ABC$ and $BCA$, respectively. Let $DX{}$ cross $CI{}$ at $E$ and let $DY{}$ cross $BI{}$ at $F{}$. Prove that the lines $FX, EY$ and $IO$ are concurrent on the external bisector of $\angle BAC$. [i]David-Andrei Anghel[/i]

2022 Girls in Math at Yale, R3

[b]p7[/b] Cindy cuts regular hexagon $ABCDEF$ out of a sheet of paper. She folds $B$ over $AC$, resulting in a pentagon. Then, she folds $A$ over $CF$, resulting in a quadrilateral. The area of $ABCDEF$ is $k$ times the area of the resulting folded shape. Find $k$. [b]p8[/b] Call a sequence $\{a_n\} = a_1, a_2, a_3, . . .$ of positive integers [i]Fib-o’nacci[/i] if it satisfies $a_n = a_{n-1}+a_{n-2}$ for all $n \ge 3$. Suppose that $m$ is the largest even positive integer such that exactly one [i]Fib-o’nacci[/i] sequence satisfies $a_5 = m$, and suppose that $n$ is the largest odd positive integer such that exactly one [i]Fib-o’nacci[/i] sequence satisfies $a_5 = n$. Find $mn$. [b]p9[/b] Compute the number of ways there are to pick three non-empty subsets $A$, $B$, and $C$ of $\{1, 2, 3, 4, 5, 6\}$, such that $|A| = |B| = |C|$ and the following property holds: $$A \cap B \cap C = A \cap B = B \cap C = C \cap A.$$