This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1995 All-Russian Olympiad Regional Round, 10.7

$N^3$ unit cubes are made into beads by drilling a hole through them along a diagonal, put on a string and binded. Thus the cubes can move freely in space as long as the vertices of two neighboring cubes (including the first and last one) are touching. For which $N$ is it possible to build a cube of edge $N$ using these cubes?

2019 Purple Comet Problems, 20

Tags: geometry
In the diagram below, points $D, E$, and $F$ are on the inside of equilateral $\vartriangle ABC$ such that $D$ is on $\overline{AE}, E$ is on $\overline{CF}, F$ is on $\overline{BD}$, and the triangles $\vartriangle AEC, \vartriangle BDA$, and $\vartriangle CFB$ are congruent. Given that $AB = 10$ and $DE = 6$, the perimeter of $\vartriangle BDA$ is $\frac{a+b\sqrt{c}}{d}$, where $a, b, c$, and $d$ are positive integers, $b$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a + b + c + d$. [img]https://cdn.artofproblemsolving.com/attachments/8/6/98da82fc1c26fa13883a47ba6d45a015622b20.png[/img]

2022 CMWMC, R6

[u]Set 6[/u] [b]p16.[/b] Let $x$ and $y$ be non-negative integers. We say point $(x, y)$ is square if $x^2 + y$ is a perfect square. Find the sum of the coordinates of all distinct square points which also satisfy $x^2 + y \le 64$. [b]p17.[/b] Two integers $a$ and $b$ are randomly chosen from the set $\{1, 2, 13, 17, 19, 87, 115, 121\}$, with $a > b$. What is the expected value of the number of factors of $ab$? [b]p18.[/b] Marnie the Magical Cello is jumping on nonnegative integers on number line. She starts at $0$ and jumps following two specific rules. For each jump she can either jump forward by $1$ or jump to the next multiple of $4$ (the next multiple must be strictly greater than the number she is currently on). How many ways are there for her to jump to $2022$? (Two ways are considered distinct only if the sequence of numbers she lands on is different.) PS. You should use hide for answers.

Math Hour Olympiad, Grades 8-10, 2022

[u]Round 1[/u] [b]p1.[/b] Alex is writing a sequence of $A$’s and $B$’s on a chalkboard. Any $20$ consecutive letters must have an equal number of $A$’s and $B$’s, but any 22 consecutive letters must have a different number of $A$’s and $B$’s. What is the length of the longest sequence Alex can write?. [b]p2.[/b] A positive number is placed on each of the $10$ circles in this picture. It turns out that for each of the nine little equilateral triangles, the number on one of its corners is the sum of the numbers on the other two corners. Is it possible that all $10$ numbers are different? [img]https://cdn.artofproblemsolving.com/attachments/b/f/c501362211d1c2a577e718d2b1ed1f1eb77af1.png[/img] [b]p3.[/b] Pablo and Nina take turns entering integers into the cells of a $3 \times 3$ table. Pablo goes first. The person who fills the last empty cell in a row must make the numbers in that row add to $0$. Can Nina ensure at least two of the columns have a negative sum, no matter what Pablo does? [b]p4. [/b]All possible simplified fractions greater than $0$ and less than $1$ with denominators less than or equal to $100$ are written in a row with a space before each number (including the first). Zeke and Qing play a game, taking turns choosing a blank space and writing a “$+$” or “$-$” sign in it. Zeke goes first. After all the spaces have been filled, Zeke wins if the value of the resulting expression is an integer. Can Zeke win no matter what Qing does? [img]https://cdn.artofproblemsolving.com/attachments/3/6/15484835686fbc2aa092e8afc6f11cd1d1fb88.png[/img] [b]p5.[/b] A police officer patrols a town whose map is shown. The officer must walk down every street segment at least once and return to the starting point, only changing direction at intersections and corners. It takes the officer one minute to walk each segment. What is the fastest the officer can complete a patrol? [img]https://cdn.artofproblemsolving.com/attachments/0/c/d827cf26c8eaabfd5b0deb92612a6e6ebffb47.png[/img] [u]Round 2[/u] [b]p6.[/b] Prove that among any $3^{2022}$ integers, it is possible to find exactly $3^{2021}$ of them whose sum is divisible by $3^{2021}$. [b]p7.[/b] Given a list of three numbers, a zap consists of picking two of the numbers and decreasing each of them by their average. For example, if the list is $(5, 7, 10)$ and you zap $5$ and $10$, whose average is $7.5$, the new list is $(-2.5, 7, 2.5)$. Is it possible to start with the list $(3, 1, 4)$ and, through some sequence of zaps, end with a list in which the sum of the three numbers is $0$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1995 Irish Math Olympiad, 3

Points $ A,X,D$ lie on a line in this order, point $ B$ is on the plane such that $ \angle ABX>120^{\circ}$, and point $ C$ is on the segment $ BX$. Prove the inequality: $ 2AD \ge \sqrt{3} (AB\plus{}BC\plus{}CD)$.

2007 Sharygin Geometry Olympiad, 2

Points $A', B', C'$ are the feet of the altitudes $AA', BB'$ and $CC'$ of an acute triangle $ABC$. A circle with center $B$ and radius $BB'$ meets line $A'C'$ at points $K$ and $L$ (points $K$ and $A$ are on the same side of line $BB'$). Prove that the intersection point of lines $AK$ and $CL$ belongs to line $BO$ ($O$ is the circumcenter of triangle $ABC$).

2022 Iranian Geometry Olympiad, 4

Let $AD$ be the internal angle bisector of triangle $ABC$. The incircles of triangles $ABC$ and $ACD$ touch each other externally. Prove that $\angle ABC > 120^{\circ}$. (Recall that the incircle of a triangle is a circle inside the triangle that is tangent to its three sides.) [i]Proposed by Volodymyr Brayman (Ukraine)[/i]

1974 IMO Longlists, 11

Given a line $p$ and a triangle $\Delta$ in the plane, construct an equilateral triangle one of whose vertices lies on the line $p$, while the other two halve the perimeter of $\Delta.$

2009 Serbia Team Selection Test, 1

Let $ \alpha$ and $ \beta$ be the angles of a non-isosceles triangle $ ABC$ at points $ A$ and $ B$, respectively. Let the bisectors of these angles intersect opposing sides of the triangle in $ D$ and $ E$, respectively. Prove that the acute angle between the lines $ DE$ and $ AB$ isn't greater than $ \frac{|\alpha\minus{}\beta|}3$.

2013 ELMO Shortlist, 6

Let $ABCDEF$ be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define $X=AB\cap DE$, $Y=BC\cap EF$, and $Z=CD\cap FA$. Prove that \[\frac{XY}{XZ}=\frac{BE}{AD}\frac{\sin |\angle{B}-\angle{E}|}{\sin |\angle{A}-\angle{D}|}.\][i]Proposed by Victor Wang[/i]

2003 Tournament Of Towns, 3

Tags: geometry
An ant crawls on the outer surface of the box in a shape of rectangular parallelepiped. From ant’s point of view, the distance between two points on a surface is defined by the length of the shortest path ant need to crawl to reach one point from the other. Is it true that if ant is at vertex then from ant’s point of view the opposite vertex be the most distant point on the surface?

2021 Adygea Teachers' Geometry Olympiad, 1

Tags: tangent , geometry
a) Two circles of radii $6$ and $24$ are tangent externally. Line $\ell$ touches the first circle at point $A$, and the second at point $B$. Find $AB$. b) The distance between the centers $O_1$ and $O_2$ of circles of radii $6$ and $24$ is $36$. Line $\ell$ touches the first circle at point $A$, and the second at point $B$ and intersects $O_1O_2$. Find $AB$.

2020 ABMC, 2020 Dec

[b]p1.[/b] If $a \diamond b = ab - a + b$, find $(3 \diamond 4) \diamond 5$ [b]p2.[/b] If $5$ chickens lay $5$ eggs in $5$ days, how many chickens are needed to lay $10$ eggs in $10$ days? [b]p3.[/b] As Alissa left her house to go to work one hour away, she noticed that her odometer read $16261$ miles. This number is a "special" number for Alissa because it is a palindrome and it contains exactly $1$ prime digit. When she got home that evening, it had changed to the next greatest "special" number. What was Alissa's average speed, in miles per hour, during her two hour trip? [b]p4.[/b] How many $1$ in by $3$ in by $8$ in blocks can be placed in a $4$ in by $4$ in by $9$ in box? [b]p5.[/b] Apple loves eating bananas, but she prefers unripe ones. There are $12$ bananas in each bunch sold. Given any bunch, if there is a $\frac13$ probability that there are $4$ ripe bananas, a $\frac16$ probability that there are $6$ ripe bananas, and a $\frac12$ probability that there are $10$ ripe bananas, what is the expected number of unripe bananas in $12$ bunches of bananas? [b]p6.[/b] The sum of the digits of a $3$-digit number $n$ is equal to the same number without the hundreds digit. What is the tens digit of $n$? [b]p7.[/b] How many ordered pairs of positive integers $(a, b)$ satisfy $a \le 20$, $b \le 20$, $ab > 15$? [b]p8.[/b] Let $z(n)$ represent the number of trailing zeroes of $n!$. What is $z(z(6!))?$ (Note: $n! = n\cdot (n-1) \cdot\cdot\cdot 2 \cdot 1$) [b]p9.[/b] On the Cartesian plane, points $A = (-1, 3)$, $B = (1, 8)$, and $C = (0, 10)$ are marked. $\vartriangle ABC$ is reflected over the line $y = 2x + 3$ to obtain $\vartriangle A'B'C'$. The sum of the $x$-coordinates of the vertices of $\vartriangle A'B'C'$ can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a$, $b$. Compute $a + b$. [b]p10.[/b] How many ways can Bill pick three distinct points from the figure so that the points form a non-degenerate triangle? [img]https://cdn.artofproblemsolving.com/attachments/6/a/8b06f70d474a071b75556823f70a2535317944.png[/img] [b]p11.[/b] Say piece $A$ is attacking piece $B$ if the piece $B$ is on a square that piece $A$ can move to. How many ways are there to place a king and a rook on an $8\times 8$ chessboard such that the rook isn't attacking the king, and the king isn't attacking the rook? Consider rotations of the board to be indistinguishable. (Note: rooks move horizontally or vertically by any number of squares, while kings move $1$ square adjacent horizontally, vertically, or diagonally). [b]p12.[/b] Let the remainder when $P(x) = x^{2020} - x^{2017} - 1$ is divided by $S(x) = x^3 - 7$ be the polynomial $R(x) = ax^2 + bx + c$ for integers $a$, $b$, $c$. Find the remainder when $R(1)$ is divided by $1000$. [b]p13.[/b] Let $S(x) = \left \lfloor \frac{2020}{x} \right\rfloor + \left \lfloor \frac{2020}{x + 1} \right\rfloor$. Find the number of distinct values $S(x)$ achieves for integers $x$ in the interval $[1, 2020]$. [b]p14.[/b] Triangle $\vartriangle ABC$ is inscribed in a circle with center $O$ and has sides $AB = 24$, $BC = 25$, $CA = 26$. Let $M$ be the midpoint of $\overline{AB}$. Points $K$ and $L$ are chosen on sides $\overline{BC}$ and $\overline{CA}$, respectively such that $BK < KC$ and $CL < LA$. Given that $OM = OL = OK$, the area of triangle $\vartriangle MLK$ can be expressed as $\frac{a\sqrt{b}}{c}$ where $a, b, c$ are positive integers, $gcd(a, c) = 1$ and $b$ is not divisible by the square of any prime. Find $a + b + c$. [b]p15.[/b] Euler's totient function, $\phi (n)$, is defined as the number of positive integers less than $n$ that are relatively prime to $n$. Let $S(n)$ be the set of composite divisors of $n$. Evaluate $$\sum^{50}_{k=1}\left( k - \sum_{d\in S(k)} \phi (d) \right)$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2002 Romania Team Selection Test, 3

Let $M$ and $N$ be the midpoints of the respective sides $AB$ and $AC$ of an acute-angled triangle $ABC$. Let $P$ be the foot of the perpendicular from $N$ onto $BC$ and let $A_1$ be the midpoint of $MP$. Points $B_1$ and $C_1$ are obtained similarly. If $AA_1$, $BB_1$ and $CC_1$ are concurrent, show that the triangle $ABC$ is isosceles. [i]Mircea Becheanu[/i]

2012 Korea National Olympiad, 1

Let $ ABC $ be an obtuse triangle with $ \angle A > 90^{\circ} $. Let circle $ O $ be the circumcircle of $ ABC $. $ D $ is a point lying on segment $ AB $ such that $ AD = AC $. Let $ AK $ be the diameter of circle $ O $. Two lines $ AK $ and $ CD $ meet at $ L $. A circle passing through $ D, K, L $ meets with circle $ O $ at $ P ( \ne K ) $ . Given that $ AK = 2, \angle BCD = \angle BAP = 10^{\circ} $, prove that $ DP = \sin ( \frac{ \angle A}{2} )$.

2004 India IMO Training Camp, 3

The game of $pebbles$ is played on an infinite board of lattice points $(i,j)$. Initially there is a $pebble$ at $(0,0)$. A move consists of removing a $pebble$ from point $(i,j)$and placing a $pebble$ at each of the points $(i+1,j)$ and $(i,j+1)$ provided both are vacant. Show taht at any stage of the game there is a $pebble$ at some lattice point $(a,b)$ with $0 \leq a+b \leq 3$

2023 Indonesia TST, 3

Tags: geometry
Let $ABC$ be a triangle and $\ell_1,\ell_2$ be two parallel lines. Let $\ell_i$ intersects line $BC,CA,AB$ at $X_i,Y_i,Z_i$, respectively. Let $\Delta_i$ be the triangle formed by the line passed through $X_i$ and perpendicular to $BC$, the line passed through $Y_i$ and perpendicular to $CA$, and the line passed through $Z_i$ and perpendicular to $AB$. Prove that the circumcircles of $\Delta_1$ and $\Delta_2$ are tangent.

1983 IMO Longlists, 40

Four faces of tetrahedron $ABCD$ are congruent triangles whose angles form an arithmetic progression. If the lengths of the sides of the triangles are $a < b < c$, determine the radius of the sphere circumscribed about the tetrahedron as a function on $a, b$, and $c$. What is the ratio $c/a$ if $R = a \ ?$

2010 Today's Calculation Of Integral, 531

(1) Let $ f(x)$ be a continuous function defined on $ [a,\ b]$, it is known that there exists some $ c$ such that \[ \int_a^b f(x)\ dx \equal{} (b \minus{} a)f(c)\ (a < c < b)\] Explain the fact by using graph. Note that you don't need to prove the statement. (2) Let $ f(x) \equal{} a_0 \plus{} a_1x \plus{} a_2x^2 \plus{} \cdots\cdots \plus{} a_nx^n$, Prove that there exists $ \theta$ such that \[ f(\sin \theta) \equal{} a_0 \plus{} \frac {a_1}{2} \plus{} \frac {a_3}{3} \plus{} \cdots\cdots \plus{} \frac {a_n}{n \plus{} 1},\ 0 < \theta < \frac {\pi}{2}.\]

2016 Bosnia and Herzegovina Junior BMO TST, 3

Tags: geometry
Let $O$ be a center of circle which passes through vertices of quadrilateral $ABCD$, which has perpendicular diagonals. Prove that sum of distances of point $O$ to sides of quadrilateral $ABCD$ is equal to half of perimeter of $ABCD$.

2010 IFYM, Sozopol, 7

Tags: geometry
Let $\Delta ABC$ be an isosceles triangle with base $AB$. Point $P\in AB$ is such that $AP=2PB$. Point $Q$ from the segment $CP$ is such that $\angle AQP=\angle ACB$. Prove that $\angle PQB=\frac{1}{2}\angle ACB$.

2001 Hungary-Israel Binational, 5

In a triangle $ABC$ , $B_{1}$ and $C_{1}$ are the midpoints of $AC$ and $AB$ respectively, and $I$ is the incenter. The lines $B_{1}I$ and $C_{1}I$ meet $AB$ and $AC$ respectively at $C_{2}$ and $B_{2}$ . If the areas of $\Delta ABC$ and $\Delta AB_{2}C_{2}$ are equal, find $\angle{BAC}$ .

1989 IMO Longlists, 85

Tags: geometry
Let a regular $ (2n \plus{}1)\minus{}$gon be inscribed in a circle of radius $ r.$ We consider all the triangles whose vertices are from those of the regular $ (2n \plus{} 1)\minus{}$gon. [b](a)[/b] How many triangles among them contain the center of the circle in their interior? [b](b)[/b] Find the sum of the areas of all those triangles that contain the center of the circle in their interior.

2006 JBMO ShortLists, 9

Let $ ABCD$ be a trapezoid with $ AB\parallel CD,AB>CD$ and $ \angle{A} \plus{} \angle{B} \equal{} 90^\circ$. Prove that the distance between the midpoints of the bases is equal to the semidifference of the bases.

1968 Spain Mathematical Olympiad, 4

At the two ends $A, B$ of a diameter (of length $2r$) of a pavement horizontal circular rise two vertical columns, of equal height h, whose ends support a beam $A' B' $ of length equal to the before mentioned diameter. It forms a covered by placing numerous taut cables (which are admitted to be rectilinear), joining points of the beam $A'B'$ with points of the circumference edge of the pavement, so that the cables are perpendicular to the beam $A'B'$ . You want to find out the volume enclosed between the roof and the pavement. [hide=original wording]En los dos extremos A, B de un di´ametro (de longitud 2r) de un pavimento circular horizontal se levantan sendas columnas verticales, de igual altura h, cuyos extremos soportan una viga A' B' de longitud igual al diametro citado. Se forma una cubierta colocando numerosos cables tensos (que se admite que quedan rectilıneos), uniendo puntos de la viga A'B' con puntos de la circunferencia borde del pavimento, de manera que los cables queden perpendiculares a la viga A'B' . Se desea averiguar el volumen encerrado entre la cubierta y el pavimento.[/hide]