Found problems: 25757
2016 China Team Selection Test, 1
$P$ is a point in the interior of acute triangle $ABC$. $D,E,F$ are the reflections of $P$ across $BC,CA,AB$ respectively. Rays $AP,BP,CP$ meet the circumcircle of $\triangle ABC$ at $L,M,N$ respectively. Prove that the circumcircles of $\triangle PDL,\triangle PEM,\triangle PFN$ meet at a point $T$ different from $P$.
1997 National High School Mathematics League, 3
In a $100\times25$ rectangle table, fill in a positive real number in each blank. Let the number in the $i$th line, the $j$th column be $x_{i,j}(i=1,2,\cdots,100,j=1,2,\cdots,25)$ (shown in Fig.1 ). Then, we rearrange the numbers in each column: $x'_{1,j}\geq x'_{2,j}\geq\cdots\geq x'_{100,j}(j=1,2,\cdots,25)$ (shown in Fig.2 ). Find the minumum value of $k$, satisfying:
As long as $\sum_{j=1}^{25}x_{i,j}\leq1$ for numbers in Fig.1 ($i=1,2,\cdots,100$), then $\sum_{j=1}^{25}x'_{i,j}\leq1$ for $i\geq k$ in Fig.2.
$$\textbf{Fig.1}\\
\begin{tabular}{|c|c|c|c|}
\hline
$x_{1,1}$&$x_{1,2}$&$\cdots$&$x_{1,25}$\\
\hline
$x_{2,1}$&$x_{2,2}$&$\cdots$&$x_{2,25}$\\
\hline
$\cdots$&$\cdots$&$\cdots$&$\cdots$\\
\hline
$x_{100,1}$&$x_{100,2}$&$\cdots$&$x_{100,25}$\\
\hline
\end{tabular}
\qquad\textbf{Fig.2}\\
\begin{tabular}{|c|c|c|c|}
\hline
$x'_{1,1}$&$x'_{1,2}$&$\cdots$&$x'_{1,25}$\\
\hline
$x'_{2,1}$&$x'_{2,2}$&$\cdots$&$x'_{2,25}$\\
\hline
$\cdots$&$\cdots$&$\cdots$&$\cdots$\\
\hline
$x'_{100,1}$&$x'_{100,2}$&$\cdots$&$x'_{100,25}$\\
\hline
\end{tabular}$$
2023 AMC 10, 3
A $3-4-5$ right triangle is inscribed in circle $A$, and a $5-12-13$ right triangle is inscribed in circle $B$. What is the ratio of the area of circle $A$ to the area of circle $B$?
$\textbf{(A)}~\frac{9}{25}\qquad\textbf{(B)}~\frac{1}{9}\qquad\textbf{(C)}~\frac{1}{5}\qquad\textbf{(D)}~\frac{25}{169}\qquad\textbf{(E)}~\frac{4}{25}$
Croatia MO (HMO) - geometry, 2017.3
In triangle $ABC$, $|AB| <|BC|$ holds. Point $I$ is the center of the circle inscribed in that triangle. Let $M$ be the midpoint of the side $AC$, and $N$ be the midpoint of the arc $AC$ of the circumcircle of that triangle containing point $B$. Prove that $\angle IMA = \angle INB$.
2019 Stanford Mathematics Tournament, 5
The bases of a right hexagonal prism are regular hexagons of side length $s > 0$, and the prism has height $h$. The prism contains some water, and when it is placed on a flat surface with a hexagonal face on the bottom, the water has depth $\frac{s\sqrt3}{4}$. The water depth doesn’t change when the prism is turned so that a rectangular face is on the bottom. Compute $\frac{h}{s}$.
1984 Tournament Of Towns, (068) T2
A village is constructed in the form of a square, consisting of $9$ blocks , each of side length $\ell$, in a $3 \times 3$ formation . Each block is bounded by a bitumen road . If we commence at a corner of the village, what is the smallest distance we must travel along bitumen roads , if we are to pass along each section of bitumen road at least once and finish at the same corner?
(Muscovite folklore)
2024 Ukraine National Mathematical Olympiad, Problem 6
The points $A, B, C, D$ lie on the line $\ell$ in this order. The points $P$ and $Q$ are chosen on one side of the line $\ell$, and the point $R$ is chosen on the other side so that:
$$\angle APB = \angle CPD = \angle QBC = \angle QCB = \angle RAD = \angle RDA$$
Prove that the points $P, Q, R$ lie on the same line.
[i]Proposed by Mykhailo Shtandenko, Fedir Yudin[/i]
2016 Oral Moscow Geometry Olympiad, 5
Points $I_A, I_B, I_C$ are the centers of the excircles of $ABC$ related to sides $BC, AC$ and $AB$ respectively. Perpendicular from $I_A$ to $AC$ intersects the perpendicular from $I_B$ to $B_C$ at point $X_C$. The points $X_A$ and $X_B$. Prove that the lines $I_AX_A, I_BX_B$ and $I_CX_C$ intersect at the same point.
2020 Candian MO, 3#
okay this one is from Prof. Mircea Lascu from Zalau, Romaniaand Prof. V. Cartoaje from Ploiesti, Romania. It goes like this: given being a triangle ABC for every point M inside we construct the points A[size=67]M[/size], B[size=67]M[/size], C[size=67]M[/size] on the circumcircle of the triangle ABC such that A, A[size=67]M[/size], M are collinear and so on. Find the locus of these points M for which the area of the triangle A[size=67]M[/size] B[size=67]M[/size] C[size=67]M[/size] is bigger than the area of the triangle ABC.
1999 Mexico National Olympiad, 5
In a quadrilateral $ABCD$ with $AB // CD$, the external bisectors of the angles at $B$ and $C$ meet at $P$, while the external bisectors of the angles at $A$ and $D$ meet at $Q$. Prove that the length of $PQ$ equals the semiperimeter of $ABCD$.
1987 China National Olympiad, 4
Five points are arbitrarily put inside a given equilateral triangle $ABC$ whose area is equal to $1$. Show that we can draw three equilateral triangles within triangle $ABC$ such that the following conditions are all satisfied:
i) the five points are covered by the three equilateral triangles;
ii) any side of the three equilateral triangles is parallel to a certain side of the triangle $ABC$;
iii) the sum of the areas of the three equilateral triangles is not larger than $0.64$.
1935 Moscow Mathematical Olympiad, 014
Find the locus of points on the surface of a cube that serve as the vertex of the smallest angle that subtends the diagonal.
2021 JHMT HS, 10
Let $P$ be a set of nine points in the Cartesian coordinate plane, no three of which lie on the same line. Call an ordering $\{Q_1, Q_2, \ldots, Q_9\}$ of the points in $P$ [i]special[/i] if there exists a point $C$ in the same plane such that $CQ_1 < CQ_2 < \cdots < CQ_9$. Over all possible sets $P,$ what is the largest possible number of distinct special orderings of $P?$
2005 Danube Mathematical Olympiad, 4
Let $k$ and $n$ be positive integers. Consider an array of $2\left(2^n-1\right)$ rows by $k$ columns. A $2$-coloring of the elements of the array is said to be [i]acceptable[/i] if any two columns agree on less than $2^n-1$ entries on the same row.
Given $n$, determine the maximum value of $k$ for an acceptable $2$-coloring to exist.
2017 Polish Junior Math Olympiad Second Round, 2.
Prove that if the diagonals of a certain trapezoid are perpendicular, then the sum of the lengths of the bases of this trapezoid is not greater than the sum of the lengths of the sides of this trapezoid.
2025 CMIMC Geometry, 6
Points $A, B, C, D, E,$ and $F$ lie on a sphere with center $O$ and radius $R$ such that $\overline{AB}, \overline{CD},$ and $\overline{EF}$ are pairwise perpendicular and all meet at a point $X$ inside the sphere. If $AX=1, CX=\sqrt{2}, EX=2,$ and $OX=\tfrac{\sqrt{2}}{2},$ compute the sum of all possible values of $R^2.$
1989 Swedish Mathematical Competition, 4
Let $ABCD$ be a regular tetrahedron. Find the positions of point $P$ on the edge $BD$ such that the edge $CD$ is tangent to the sphere with diameter $AP$.
2006 AMC 10, 15
Rhombus $ ABCD$ is similar to rhombus $ BFDE$. The area of rhombus $ ABCD$ is 24, and $ \angle BAD \equal{} 60^\circ$. What is the area of rhombus $ BFDE$?
[asy]
size(180);
defaultpen(linewidth(0.7)+fontsize(11));
pair A=origin, B=(2,0), C=(3, sqrt(3)), D=(1, sqrt(3)), E=(1, 1/sqrt(3)), F=(2, 2/sqrt(3));
pair point=(3/2, sqrt(3)/2);
draw(B--C--D--A--B--F--D--E--B);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));[/asy]
$ \textbf{(A) } 6 \qquad \textbf{(B) } 4\sqrt {3} \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 6\sqrt {3}$
Ukrainian TYM Qualifying - geometry, 2011.11
Let $BB_1$ and $CC_1$ be the altitudes of an acute-angled triangle $ABC$, which intersect its angle bisector $AL$ at two different points $P$ and $Q$, respectively. Denote by $F$ such a point that $PF\parallel AB$ and $QF\parallel AC$, and by $T$ the intersection point of the tangents drawn at points $B$ and $C$ to the circumscribed circle of the triangle $ABC$. Prove that the points $A, F$ and $T$ lie on the same line.
2013 All-Russian Olympiad, 2
The inscribed and exscribed sphere of a triangular pyramid $ABCD$ touch her face $BCD$ at different points $X$ and $Y$. Prove that the triangle $AXY$ is obtuse triangle.
1987 IMO Longlists, 10
In a Cartesian coordinate system, the circle $C_1$ has center $O_1(-2, 0)$ and radius $3$. Denote the point $(1, 0)$ by $A$ and the origin by $O$.Prove that there is a constant $c > 0$ such that for every $X$ that is exterior to $C1$,
\[OX- 1 \geq c \min\{AX,AX^2\}.\]
Find the largest possible $c.$
2021/2022 Tournament of Towns, P4
Consider a white 100×100 square. Several cells (not necessarily neighbouring) were
painted black. In each row or column that contains some black cells their number
is odd. Hence we may consider the middle black cell for this row or column (with
equal numbers of black cells in both opposite directions). It so happened that all
the middle black cells of such rows lie in different columns and all the middle black
cells of the columns lie in different rows.
a) Prove that there exists a cell that is both the middle black cell of its row and the middle black cell of its column.
b) Is it true that any middle black cell of a row is also a middle black cell of its column?
2006 Thailand Mathematical Olympiad, 2
Triangle $\vartriangle ABC$ has side lengths $AB = 2$, $CA = 3$ and $BC = 4$. Compute the radius of the circle centered on $BC$ that is tangent to both $AB$ and $AC$.
2012 LMT, Team Round
[b]p1.[/b] What is $7\%$ of one half of $11\%$ of $20000$ ?
[b]p2.[/b] Three circles centered at $A, B$, and $C$ are tangent to each other. Given that $AB = 8$, $AC = 10$, and $BC = 12$, find the radius of circle $ A$.
[b]p3. [/b]How many positive integer values of $x$ less than $2012$ are there such that there exists an integer $y$ for which $\frac{1}{x} +\frac{2}{2y+1} =\frac{1}{y}$ ?
[b]p4. [/b]The positive difference between $ 8$ and twice $x$ is equal to $11$ more than $x$. What are all possible values of $x$?
[b]p5.[/b] A region in the coordinate plane is bounded by the equations $x = 0$, $x = 6$, $y = 0$, and $y = 8$. A line through $(3, 4)$ with slope $4$ cuts the region in half. Another line going through the same point cuts the region into fourths, each with the same area. What is the slope of this line?
[b]p6.[/b] A polygon is composed of only angles of degrees $138$ and $150$, with at least one angle of each degree. How many sides does the polygon have?
[b]p7.[/b] $M, A, T, H$, and $L$ are all not necessarily distinct digits, with $M \ne 0$ and $L \ne 0$. Given that the sum $MATH +LMT$, where each letter represents a digit, equals $2012$, what is the average of all possible values of the three-digit integer $LMT$?
[b]p8. [/b]A square with side length $\sqrt{10}$ and two squares with side length $\sqrt{7}$ share the same center. The smaller squares are rotated so that all of their vertices are touching the sides of the larger square at distinct points. What is the distance between two such points that are on the same side of the larger square?
[b]p9.[/b] Consider the sequence $2012, 12012, 20120, 20121, ...$. This sequence is the increasing sequence of all integers that contain “$2012$”. What is the $30$th term in this sequence?
[b]p10.[/b] What is the coefficient of the $x^5$ term in the simplified expansion of $(x +\sqrt{x} +\sqrt[3]{x})^{10}$ ?
PS. You had better use hide for answers.
2018-2019 SDML (High School), 13
A steel cube has edges of length $3$ cm, and a cone has a diameter of $8$ cm and a height of $24$ cm. The cube is placed in the cone so that one of its interior diagonals coincides with the axis of the cone. What is the distance, in cm, between the vertex of the cone and the closest vertex of the cube?
[NEEDS DIAGRAM]
$ \mathrm{(A) \ } \frac{12\sqrt6-3\sqrt3}{4} \qquad \mathrm{(B) \ } \frac{9\sqrt6-3\sqrt3}{2} \qquad \mathrm {(C) \ } 5\sqrt3 \qquad \mathrm{(D) \ } 6\sqrt6 - \sqrt3 \qquad \mathrm{(E) \ } 6\sqrt6$