Found problems: 25757
2023 BMT, 3
Jingyuan is designing a bucket hat for BMT merchandise. The hat has the shape of a cylinder on top of a truncated cone, as shown in the diagram below. The cylinder has radius $9$ and height $12$. The truncated cone has base radius $15$ and height $4$, and its top radius is the same as the cylinder’s radius. Compute the total volume of this bucket hat.
[img]https://cdn.artofproblemsolving.com/attachments/a/9/467d19889d08a6081f9dcd3f4d9df60582f244.png[/img]
2005 Slovenia Team Selection Test, 1
The diagonals of a convex quadrilateral $ABCD$ intersect at $M$. The bisector of $\angle ACD$ intersects the ray $BA$ at $K$. Prove that if $MA\cdot MC + MA\cdot CD = MB \cdot MD $, then $\angle BKC = \angle BDC$
1976 IMO Shortlist, 3
In a convex quadrilateral (in the plane) with the area of $32 \text{ cm}^{2}$ the sum of two opposite sides and a diagonal is $16 \text{ cm}$. Determine all the possible values that the other diagonal can have.
EMCC Speed Rounds, 2012
[i]20 problems for 20 minutes.[/i]
[b]p1.[/b] Evaluate $=\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}$.
[b]p2.[/b] A regular hexagon and a regular $n$-sided polygon have the same perimeter. If the ratio of the side length of the hexagon to the side length of the $n$-sided polygon is $2 : 1$, what is $n$?
[b]p3.[/b] How many nonzero digits are there in the decimal representation of $2 \cdot 10\cdot 500 \cdot 2500$?
[b]p4.[/b] When the numerator of a certain fraction is increased by $2012$, the value of the fraction increases by $2$. What is the denominator of the fraction?
[b]p5.[/b] Sam did the computation $1 - 10 \cdot a + 22$, where $a$ is some real number, except he messed up his order of operations and computed the multiplication last; that is, he found the value of $(1 - 10) \cdot (a + 22)$ instead. Luckily, he still ended up with the right answer. What is $a$?
[b]p6.[/b] Let $n! = n \cdot(n-1) \cdot\cdot\cdot 2 \cdot 1$. For how many integers $n$ between $1$ and $100$ inclusive is $n!$ divisible by $36$?
[b]p7.[/b] Simplify the expression $\sqrt{\frac{3 \cdot 27^3}{27 \cdot 3^3}}$
[b]p8.[/b] Four points $A,B,C,D$ lie on a line in that order such that $\frac{AB}{CB}=\frac{AD}{CD}$ . Let $M$ be the midpoint of segment $AC$. If $AB = 6$, $BC = 2$, compute $MB \cdot MD$.
[b]p9.[/b] Allan has a deck with $8$ cards, numbered $1$, $1$, $2$, $2$, $3$, $3$, $4$, $4$. He pulls out cards without replacement, until he pulls out an even numbered card, and then he stops. What is the probability that he pulls out exactly $2$ cards?
[b]p10.[/b] Starting from the sequence $(3, 4, 5, 6, 7, 8, ... )$, one applies the following operation repeatedly. In each operation, we change the sequence $$(a_1, a_2, a_3, ... , a_{a_1-1}, a_{a_1} , a_{a_1+1},...)$$ to the sequence $$(a_2, a_3, ... , a_{a_1} , a_1, a_{a_1+1}, ...) .$$ (In other words, for a sequence starting with$ x$, we shift each of the next $x-1$ term to the left by one, and put x immediately to the right of these numbers, and keep the rest of the terms unchanged. For example, after one operation, the sequence is $(4, 5, 3, 6, 7, 8, ... )$, and after two operations, the sequence becomes $(5, 3, 6, 4, 7, 8,... )$. How many operations will it take to obtain a sequence of the form $(7, ... )$ (that is, a sequence starting with $7$)?
[b]p11.[/b] How many ways are there to place $4$ balls into a $4\times 6$ grid such that no column or row has more than one ball in it? (Rotations and reflections are considered distinct.)
[b]p12.[/b] Point $P$ lies inside triangle $ABC$ such that $\angle PBC = 30^o$ and $\angle PAC = 20^o$. If $\angle APB$ is a right angle, find the measure of $\angle BCA$ in degrees.
[b]p13.[/b] What is the largest prime factor of $9^3 - 4^3$?
[b]p14.[/b] Joey writes down the numbers $1$ through $10$ and crosses one number out. He then adds the remaining numbers. What is the probability that the sum is less than or equal to $47$?
[b]p15.[/b] In the coordinate plane, a lattice point is a point whose coordinates are integers. There is a pile of grass at every lattice point in the coordinate plane. A certain cow can only eat piles of grass that are at most $3$ units away from the origin. How many piles of grass can she eat?
[b]p16.[/b] A book has 1000 pages numbered $1$, $2$, $...$ , $1000$. The pages are numbered so that pages $1$ and $2$ are back to back on a single sheet, pages $3$ and $4$ are back to back on the next sheet, and so on, with pages $999$ and $1000$ being back to back on the last sheet. How many pairs of pages that are back to back (on a single sheet) share no digits in the same position? (For example, pages $9$ and $10$, and pages $89$ and $90$.)
[b]p17.[/b] Find a pair of integers $(a, b)$ for which $\frac{10^a}{a!}=\frac{10^b}{b!}$ and $a < b$.
[b]p18.[/b] Find all ordered pairs $(x, y)$ of real numbers satisfying
$$\begin{cases}
-x^2 + 3y^2 - 5x + 7y + 4 = 0 \\
2x^2 - 2y^2 - x + y + 21 = 0 \end{cases}$$
[b]p19.[/b] There are six blank fish drawn in a line on a piece of paper. Lucy wants to color them either red or blue, but will not color two adjacent fish red. In how many ways can Lucy color the fish?
[b]p20.[/b] There are sixteen $100$-gram balls and sixteen $99$-gram balls on a table (the balls are visibly indistinguishable). You are given a balance scale with two sides that reports which side is heavier or that the two sides have equal weights. A weighing is defined as reading the result of the balance scale: For example, if you place three balls on each side, look at the result, then add two more balls to each side, and look at the result again, then two weighings have been performed. You wish to pick out two different sets of balls (from the $32$ balls) with equal numbers of balls in them but different total weights. What is the minimal number of weighings needed to ensure this?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1984 AIME Problems, 3
A point $P$ is chosen in the interior of $\triangle ABC$ so that when lines are drawn through $P$ parallel to the sides of $\triangle ABC$, the resulting smaller triangles, $t_1$, $t_2$, and $t_3$ in the figure, have areas 4, 9, and 49, respectively. Find the area of $\triangle ABC$.
[asy]
size(200);
pathpen=black+linewidth(0.65);pointpen=black;
pair A=(0,0),B=(12,0),C=(4,5);
D(A--B--C--cycle); D(A+(B-A)*3/4--A+(C-A)*3/4); D(B+(C-B)*5/6--B+(A-B)*5/6);D(C+(B-C)*5/12--C+(A-C)*5/12);
MP("A",C,N);MP("B",A,SW);MP("C",B,SE); /* sorry mixed up points according to resources diagram. */
MP("t_3",(A+B+(B-A)*3/4+(A-B)*5/6)/2+(-1,0.8),N);
MP("t_2",(B+C+(B-C)*5/12+(C-B)*5/6)/2+(-0.3,0.1),WSW);
MP("t_1",(A+C+(C-A)*3/4+(A-C)*5/12)/2+(0,0.15),ESE);[/asy]
2001 AIME Problems, 5
An equilateral triangle is inscribed in the ellipse whose equation is $x^2+4y^2=4.$ One vertex of the triangle is $(0,1),$ one altitude is contained in the $y$-axis, and the length of each side is $\sqrt{\frac mn},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
VI Soros Olympiad 1999 - 2000 (Russia), 9.8
Given a line $\ell$ and a ray $p$ on a plane with its origin on this line. Two fixed circles (not necessarily equal) are constructed, inscribed in the two formed angles. On ray $p$, point $A$ is taken so that the tangents from $A$ to the given circles, different from $p$, intersect line $\ell$ at points $B$ and $C$, and at the same time triangle $ABC$ contains the given circles. Find the locus of the centers of the circles inscribed in triangle $ABC$ (as $A$ moves).
2012 China Girls Math Olympiad, 2
Circles $Q_1$ and $Q_2$ are tangent to each other externally at $T$. Points $A$ and $E$ are on $Q_1$, lines $AB$ and $DE$ are tangent to $Q_2$ at $B$ and $D$, respectively, lines $AE$ and $BD$ meet at point $P$. Prove that
(1) $\frac{AB}{AT}=\frac{ED}{ET}$;
(2) $\angle ATP + \angle ETP = 180^{\circ}$.
[asy]import graph; size(5.97cm); real lsf=0.5; pathpen=linewidth(0.7); pointpen=black; pen fp=fontsize(10); pointfontpen=fp; real xmin=-6,xmax=5.94,ymin=-3.19,ymax=3.43;
pair Q_1=(-2.5,-0.5), T=(-1.5,-0.5), Q_2=(0.5,-0.5), A=(-2.09,0.41), B=(-0.42,1.28), D=(-0.2,-2.37), P=(-0.52,2.96);
D(CR(Q_1,1)); D(CR(Q_2,2)); D(A--B); D((-3.13,-1.27)--D); D(P--(-3.13,-1.27)); D(P--D); D(T--(-3.13,-1.27)); D(T--A); D(T--P);
D(Q_1); MP("Q_1",(-2.46,-0.44),NE*lsf); D(T); MP("T",(-1.46,-0.44),NE*lsf); D(Q_2); MP("Q_2",(0.54,-0.44),NE*lsf); D(A); MP("A",(-2.22,0.58),NE*lsf); D(B); MP("B",(-0.35,1.45),NE*lsf); D((-3.13,-1.27)); MP("E",(-3.52,-1.62),NE*lsf); D(D); MP("D",(-0.17,-2.31),NE*lsf); D(P); MP("P",(-0.47,3.02),NE*lsf);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]
Kyiv City MO Juniors 2003+ geometry, 2015.8.3
In the isosceles triangle $ABC$, $ (AB = BC)$ the bisector $AD$ was drawn, and in the triangle $ABD$ the bisector $DE$ was drawn. Find the values of the angles of the triangle $ABC$, if it is known that the bisectors of the angles $ABD$ and $AED$ intersect on the line $AD$.
(Fedak Ivan)
2023 Czech-Polish-Slovak Junior Match, 6
Given a rectangle $ABCD$. Points $E$ and $F$ lie on sides $BC$ and $CD$ respectively so that the area of triangles $ABE$, $ECF$, $FDA$ is equal to $1$. Determine the area of triangle $AEF$.
LMT Accuracy Rounds, 2022 S1
Kevin colors a ninja star on a piece of graph paper where each small square has area $1$ square inch. Find the area of the region colored, in square inches.
[img]https://cdn.artofproblemsolving.com/attachments/3/3/86f0ae7465e99d3e4bd3a816201383b98dc429.png[/img]
1947 Moscow Mathematical Olympiad, 135-
Position the $4$ points on plane so that when measuring of all pairwise distances between them, it turned out only two different numbers. Find all such locations.
1996 All-Russian Olympiad, 2
The centers $O_1$; $O_2$; $O_3$ of three nonintersecting circles of equal radius are positioned at the vertices of a triangle. From each of the points $O_1$; $O_2$; $O_3$ one draws tangents to the other two given circles. It is
known that the intersection of these tangents form a convex hexagon. The sides of the hexagon are alternately colored red and blue. Prove that the sum of the lengths of the red sides equals the sum of the lengths of the blue sides.
[i]D. Tereshin[/i]
2018 Purple Comet Problems, 28
In $\vartriangle ABC$ points $D, E$, and $F$ lie on side $\overline{BC}$ such that $\overline{AD}$ is an angle bisector of $\angle BAC$, $\overline{AE}$ is a median, and $\overline{AF}$ is an altitude. Given that $AB = 154$ and $AC = 128$, and $9 \times DE = EF,$ find the side length $BC$.
2015 Sharygin Geometry Olympiad, P9
Let $ABC$ be an acute-angled triangle. Construct points $A', B', C'$ on its sides $BC, CA, AB$ such that:
- $A'B' \parallel AB$,
- $C'C$ is the bisector of angle $A'C'B'$,
- $A'C' + B'C'= AB$.
Kvant 2023, M2756
a) Determine if there exists a convex hexagon $ABCDEF$ with
$$\angle ABD + \angle AED > 180^{\circ},$$
$$\angle BCE + \angle BFE > 180^{\circ},$$
$$\angle CDF + \angle CAF > 180^{\circ}.$$
b) The same question, with additional condition, that diagonals $AD, BE,$ and $CF$ are concurrent.
2019 AMC 10, 10
A rectangular floor that is $10$ feet wide and $17$ feet long is tiled with $170$ one-foot square tiles. A bug walks from one corner to the opposite corner in a straight line. Including the first and the last tile, how many tiles does the bug visit?
$\textbf{(A) } 17 \qquad\textbf{(B) } 25 \qquad\textbf{(C) } 26 \qquad\textbf{(D) } 27 \qquad\textbf{(E) } 28$
2010 Sharygin Geometry Olympiad, 23
A cyclic hexagon $ABCDEF$ is such that $AB \cdot CF= 2BC \cdot FA, CD \cdot EB = 2 DE \cdot BC$ and $EF \cdot AD = 2FA \cdot DE.$ Prove that the lines $AD, BE$ and $CF$ are concurrent.
2025 Turkey Team Selection Test, 6
Let $ABC$ be a scalene triangle with incenter $I$ and incircle $\omega$. Let the tangency points of $\omega$ to $BC,AC\text{ and } AB$ be $D,E,F$ respectively. Let the line $EF$ intersect the circumcircle of $ABC$ at the points $G, H$. Assume that $E$ lies between the points $F$ and $G$. Let $\Gamma$ be a circle that passes through $G$ and $H$ and that is tangent to $\omega$ at the point $M$ which lies on different semi-planes with $D$ with respect to the line $EF$. Let $\Gamma$ intersect $BC$ at points $K$ and $L$ and let the second intersection point of the circumcircle of $ABC$ and the circumcircle of $AKL$ be $N$. Prove that the intersection point of $NM$ and $AI$ lies on the circumcircle of $ABC$ if and only if the intersection point of $HB$ and $GC$ lies on $\Gamma$.
2019 Iranian Geometry Olympiad, 3
Circles $\omega_1$ and $\omega_2$ have centres $O_1$ and $O_2$, respectively. These two circles intersect at points $X$ and $Y$. $AB$ is common tangent line of these two circles such that $A$ lies on $\omega_1$ and $B$ lies on $\omega_2$. Let tangents to $\omega_1$ and $\omega_2$ at $X$ intersect $O_1O_2$ at points $K$ and $L$, respectively. Suppose that line $BL$ intersects $\omega_2$ for the second time at $M$ and line $AK$ intersects $\omega_1$ for the second time at $N$. Prove that lines $AM, BN$ and $O_1O_2$ concur.
[i]Proposed by Dominik Burek - Poland[/i]
2008 Harvard-MIT Mathematics Tournament, 9
Let $ S$ be the set of points $ (a,b)$ with $ 0\le a,b\le1$ such that the equation \[x^4 \plus{} ax^3 \minus{} bx^2 \plus{} ax \plus{} 1 \equal{} 0\] has at least one real root. Determine the area of the graph of $ S$.
2020 Ecuador NMO (OMEC), 3
Let $ABC$ a triangle with circumcircle $\Gamma$ and circumcenter $O$. A point $X$, different from $A$, $B$, $C$, or their diametrically opposite points, on $\Gamma$, is chosen. Let $\omega$ the circumcircle of $COX$. Let $E$ the second intersection of $XA$ with $\omega$, $F$ the second intersection of $XB$ with $\omega$ and $D$ a point on line $AB$ such that $CD \perp EF$.
Prove that $E$ is the circumcenter of $ADC$ and $F$ is the circumcenter of $BDC$.
2015 Brazil National Olympiad, 1
Let $\triangle ABC$ be an acute-scalene triangle, and let $N$ be the center of the circle wich pass trough the feet of altitudes. Let $D$ be the intersection of tangents to the circumcircle of $\triangle ABC$ at $B$ and $C$. Prove that $A$, $D$ and $N$ are collinear iff $\measuredangle BAC = 45º$.
2025 Iran MO (2nd Round), 3
Point $P$ lies inside of scalene triangle $ABC$ with incenter $I$ such that $:$
$$ 2\angle ABP = \angle BCA , 2\angle ACP = \angle CBA $$
Lines $PB$ and $PC$ intersect line $AI$ respectively at $B'$ and $C'$. Line through $B'$ parallel to $AB$ intersects $BI$ at $X$ and line through $C'$ parallel to $AC$ intersects $CI$ at $Y$. Prove that triangles $PXY$ and $ABC$ are similar.
2024 JHMT HS, 9
Compute the smallest positive integer $k$ such that the area of the region bounded by
\[ k\min(x,y)+x^2+y^2=0 \]
exceeds $100$.