This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2014 Contests, 2

A segment $AB$ is given in (Euclidean) plane. Consider all triangles $XYZ$ such, that $X$ is an inner point of $AB$, triangles $XBY$ and $XZA$ are similar (in this order of vertices), and points $A, B, Y, Z$ lie on a circle in this order. Find the locus of midpoints of all such segments $YZ$. (Day 1, 2nd problem authors: Michal Rolínek, Jaroslav Švrček)

2012 Serbia National Math Olympiad, 1

Let $ABCD$ be a parallelogram and $P$ be a point on diagonal $BD$ such that $\angle PCB=\angle ACD$. Circumcircle of triangle $ABD$ intersects line $AC$ at points $A$ and $E$. Prove that \[\angle AED=\angle PEB.\]

1983 IMO Longlists, 42

Tags: geometry , ratio
Consider the square $ABCD$ in which a segment is drawn between each vertex and the midpoints of both opposite sides. Find the ratio of the area of the octagon determined by these segments and the area of the square $ABCD.$

1995 All-Russian Olympiad, 6

Let be given a semicircle with diameter $AB$ and center $O$, and a line intersecting the semicircle at $C$ and $D$ and the line $AB$ at $M$ ($MB < MA$, $MD < MC$). The circumcircles of the triangles $AOC$ and $DOB$ meet again at $L$. Prove that $\angle MKO$ is right. [i]L. Kuptsov[/i]

2022 Girls in Math at Yale, R4

[b]p10 [/b]Kathy has two positive real numbers, $a$ and $b$. She mistakenly writes $$\log (a + b) = \log (a) + \log( b),$$ but miraculously, she finds that for her combination of $a$ and $b$, the equality holds. If $a = 2022b$, then $b = \frac{p}{q}$ , for positive integers $p, q$ where $gcd(p, q) = 1$. Find $p + q$. [b]p11[/b] Points $X$ and $Y$ lie on sides $AB$ and $BC$ of triangle $ABC$, respectively. Ray $\overrightarrow{XY}$ is extended to point $Z$ such that $A, C$, and $Z$ are collinear, in that order. If triangle$ ABZ$ is isosceles and triangle $CYZ$ is equilateral, then the possible values of $\angle ZXB$ lie in the interval $I = (a^o, b^o)$, such that $0 \le a, b \le 360$ and such that $a$ is as large as possible and $b$ is as small as possible. Find $a + b$. [b]p12[/b] Let $S = \{(a, b) | 0 \le a, b \le 3, a$ and $b$ are integers $\}$. In other words, $S$ is the set of points in the coordinate plane with integer coordinates between $0$ and $3$, inclusive. Prair selects four distinct points in $S$, for each selected point, she draws lines with slope $1$ and slope $-1$ passing through that point. Given that each point in $S$ lies on at least one line Prair drew, how many ways could she have selected those four points?

2016 SDMO (High School), 4

Let triangle $ABC$ be an isosceles triangle with $AB = AC$. Suppose that the angle bisector of its angle $\angle B$ meets the side $AC$ at a point $D$ and that $BC = BD+AD$. Determine $\angle A$.

1973 Putnam, A1

(a) Let $ABC$ be any triangle. Let $X, Y, Z$ be points on the sides $BC, CA, AB$ respectively. Suppose that $BX \leq XC, CY \leq YA, AZ \leq ZB$. Show that the area of the triangle $XYZ$ $\geq 1\slash 4$ times the area of $ABC.$ (b) Let $ABC$ be any triangle, and let $X, Y, Z$ be points on the sides $BC, CA, AB$ respectively. Using (a) or by any other method, show: One of the three corner triangles $AZY, BXZ, CYX$ has an area $\leq$ area of the triangle $XYZ.$

JOM 2015 Shortlist, G7

Tags: geometry
Let $ABC$ be an acute triangle. Let $H_A,H_B,H_C$ be points on $BC,AC,AB$ respectively such that $AH_A\perp BC, BH_B\perp AC, CH_C\perp AB$. Let the circumcircles $AH_BH_C,BH_AH_C,CH_AH_B$ be $\omega_A,\omega_B,\omega_C$ with circumcenters $O_A,O_B,O_C$ respectively and define $O_AB\cap \omega_B=P_{AB}\neq B$. Define $P_{AC},P_{BA},P_{BC},P_{CA},P_{CB}$ similarly. Define circles $\omega_{AB},\omega_{AC}$ to be $O_AP_{AB}H_C,O_AP_{AC}H_B$ respectively. Define circles $\omega_{BA},\omega_{BC},\omega_{CA},\omega_{CB}$ similarly. Prove that there are $6$ pairs of tangent circles in the $6$ circles of the form $\omega_{xy}$.

1996 Romania National Olympiad, 3

Let $AB CD$ be a rectangle with $AB=1$. If $m ( \angle BDC) = 82^o30'$, compute the length of$ BD$ and the cosine of $82^o30'$.

2013 Putnam, 5

For $m\ge 3,$ a list of $\binom m3$ real numbers $a_{ijk}$ $(1\le i<j<k\le m)$ is said to be [i]area definite[/i] for $\mathbb{R}^n$ if the inequality \[\sum_{1\le i<j<k\le m}a_{ijk}\cdot\text{Area}(\triangle A_iA_jA_k)\ge0\] holds for every choice of $m$ points $A_1,\dots,A_m$ in $\mathbb{R}^n.$ For example, the list of four numbers $a_{123}=a_{124}=a_{134}=1, a_{234}=-1$ is area definite for $\mathbb{R}^2.$ Prove that if a list of $\binom m3$ numbers is area definite for $\mathbb{R}^2,$ then it is area definite for $\mathbb{R}^3.$

2019 Macedonia National Olympiad, 1

In an acute-angled triangle $ABC$, point $M$ is the midpoint of side $BC$ and the centers of the $M$- excircles of triangles $AMB$ and $AMC$ are $D$ and $E$, respectively. The circumcircle of triangle $ABD$ intersects line $BC$ at points $B$ and $F$. The circumcircle of triangle $ACE$ intersects line $BC$ at points $C$ and $G$. Prove that $BF\hspace{0.25mm} = \hspace{0.25mm} CG$ .

Kyiv City MO Juniors 2003+ geometry, 2008.9.5

Tags: angle , geometry
In the triangle $ABC$ on the side $AC$ the points $F$ and $L$ are selected so that $AF = LC <\frac{1}{2} AC$. Find the angle $ \angle FBL $ if $A {{B} ^ {2}} + B {{C} ^ {2}} = A {{L} ^ {2}} + L {{C } ^ {2}}$ (Zhidkov Sergey)

2023 VN Math Olympiad For High School Students, Problem 11

Tags: ratio , geometry
Given a triangle $ABC$ inscribed in $(O)$ with $2$ symmedians $AD, CF(D,F$ are on the sides $BC, AB,$ respectively$).$ The ray $DF$ intersects $(O)$ at $P.$ The line passing through $P$ and perpendicular to $OA$ intersects $AB,AC$ at $Q,R,$ respectively$.$ Compute the ratio $\dfrac{PR}{PQ}.$

2004 France Team Selection Test, 3

Each point of the plane with two integer coordinates is the center of a disk with radius $ \frac {1} {1000}$. Prove that there exists an equilateral triangle whose vertices belong to distinct disks. Prove that such a triangle has side-length greater than 96.

2020 USEMO, 3

Let $ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. Let $\Gamma$ denote the circumcircle of triangle $ABC$, and $N$ the midpoint of $OH$. The tangents to $\Gamma$ at $B$ and $C$, and the line through $H$ perpendicular to line $AN$, determine a triangle whose circumcircle we denote by $\omega_A$. Define $\omega_B$ and $\omega_C$ similarly. Prove that the common chords of $\omega_A$,$\omega_B$ and $\omega_C$ are concurrent on line $OH$. Proposed by Anant Mudgal

2020 Sharygin Geometry Olympiad, 11

Tags: geometry
Let $ABC$ be a triangle with $\angle A=60^{\circ}$, $AD$ be its bisector, and $PDQ$ be a regular triangle with altitude $DA$. The lines $PB$ and $QC$ meet at point $K$. Prove that $AK$ is a symmedian of $ABC$.

2016 Junior Regional Olympiad - FBH, 4

Let $C$ and $D$ be points inside angle $\angle AOB$ such that $5\angle COD = 4\angle AOC$ and $3\angle COD = 2\angle DOB$. If $\angle AOB = 105^{\circ}$, find $\angle COD$

2000 France Team Selection Test, 1

Points $P,Q,R,S$ lie on a circle and $\angle PSR$ is right. $H,K$ are the projections of $Q$ on lines $PR,PS$. Prove that $HK$ bisects segment $ QS$.

2021 AMC 10 Fall, 25

A rectangle with side lengths $1{ }$ and $3,$ a square with side length $1,$ and a rectangle $R$ are inscribed inside a larger square as shown. The sum of all possible values for the area of $R$ can be written in the form $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. What is $m+n?$ [asy] size(8cm); draw((0,0)--(10,0)); draw((0,0)--(0,10)); draw((10,0)--(10,10)); draw((0,10)--(10,10)); draw((1,6)--(0,9)); draw((0,9)--(3,10)); draw((3,10)--(4,7)); draw((4,7)--(1,6)); draw((0,3)--(1,6)); draw((1,6)--(10,3)); draw((10,3)--(9,0)); draw((9,0)--(0,3)); draw((6,13/3)--(10,22/3)); draw((10,22/3)--(8,10)); draw((8,10)--(4,7)); draw((4,7)--(6,13/3)); label("$3$",(9/2,3/2),N); label("$3$",(11/2,9/2),S); label("$1$",(1/2,9/2),E); label("$1$",(19/2,3/2),W); label("$1$",(1/2,15/2),E); label("$1$",(3/2,19/2),S); label("$1$",(5/2,13/2),N); label("$1$",(7/2,17/2),W); label("$R$",(7,43/6),W); [/asy] $(\textbf{A})\: 14\qquad(\textbf{B}) \: 23\qquad(\textbf{C}) \: 46\qquad(\textbf{D}) \: 59\qquad(\textbf{E}) \: 67$

1955 Kurschak Competition, 1

Prove that if the two angles on the base of a trapezoid are different, then the diagonal starting from the smaller angle is longer than the other diagonal. [img]https://cdn.artofproblemsolving.com/attachments/7/1/77cf4958931df1c852c347158ff1e2bbcf45fd.png[/img]

1951 AMC 12/AHSME, 48

Tags: geometry , ratio
The area of a square inscribed in a semicircle is to the area of the square inscribed in the entire circle as: $ \textbf{(A)}\ 1: 2 \qquad\textbf{(B)}\ 2: 3 \qquad\textbf{(C)}\ 2: 5 \qquad\textbf{(D)}\ 3: 4 \qquad\textbf{(E)}\ 3: 5$

2023 Iran MO (3rd Round), 1

Given $12$ complex numbers $z_1,...,z_{12}$ st for each $1 \leq i \leq 12$: $$|z_i|=2 , |z_i - z_{i+1}| \geq 1$$ prove that : $$\sum_{1 \leq i \leq 12} \frac{1}{|z_i\overline{z_{i+1}}+1|^2} \geq \frac{1}{2}$$

2017 Dutch IMO TST, 1

Tags: geometry
A circle $\omega$ with diameter $AK$ is given. The point $M$ lies in the interior of the circle, but not on $AK$. The line $AM$ intersects $\omega$ in $A$ and $Q$. The tangent to $\omega$ at $Q$ intersects the line through $M$ perpendicular to $AK$, at $P$. The point $L$ lies on $\omega$, and is such that $PL$ is tangent to $\omega$ and $L\neq Q$. Show that $K, L$, and $M$ are collinear.

2014 Contests, 2

Let $ABC$ be a triangle. Let $H$ be the foot of the altitude from $C$ on $AB$. Suppose that $AH = 3HB$. Suppose in addition we are given that (a) $M$ is the midpoint of $AB$; (b) $N$ is the midpoint of $AC$; (c) $P$ is a point on the opposite side of $B$ with respect to the line $AC$ such that $NP = NC$ and $PC = CB$. Prove that $\angle APM = \angle PBA$.

2006 South East Mathematical Olympiad, 2

In $\triangle ABC$, $\angle ABC=90^{\circ}$. Points $D,G$ lie on side $AC$. Points $E, F$ lie on segment $BD$, such that $AE \perp BD $ and $GF \perp BD$. Show that if $BE=EF$, then $\angle ABG=\angle DFC$.