This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2024 India IMOTC, 12

Tags: geometry
Let $ABC$ be an acute-angled triangle with $AB<AC$, and let $O,H$ be its circumcentre and orthocentre respectively. Points $Z,Y$ lie on segments $AB,AC$ respectively, such that \[\angle ZOB=\angle YOC = 90^{\circ}.\] The perpendicular line from $H$ to line $YZ$ meets lines $BO$ and $CO$ at $Q,R$ respectively. Let the tangents to the circumcircle of $\triangle AYZ$ at points $Y$ and $Z$ meet at point $T$. Prove that $Q, R, O, T$ are concyclic. [i]Proposed by Kazi Aryan Amin and K.V. Sudharshan[/i]

1992 Tournament Of Towns, (344) 2

On the plane a square is given, and $1993$ equilateral triangles are inscribed in this square. All vertices of any of these triangles lie on the border of the square. Prove that one can find a point on the plane belonging to the borders of no less than $499$ of these triangles. (N Sendrakyan)

2005 APMO, 5

In a triangle $ABC$, points $M$ and $N$ are on sides $AB$ and $AC$, respectively, such that $MB = BC = CN$. Let $R$ and $r$ denote the circumradius and the inradius of the triangle $ABC$, respectively. Express the ratio $MN/BC$ in terms of $R$ and $r$.

2024 USA TSTST, 8

Let $ABC$ be a scalene triangle, and let $D$ be a point on side $BC$ satisfying $\angle BAD=\angle DAC$. Suppose that $X$ and $Y$ are points inside $ABC$ such that triangles $ABX$ and $ACY$ are similar and quadrilaterals $ACDX$ and $ABDY$ are cyclic. Let lines $BX$ and $CY$ meet at $S$ and lines $BY$ and $CX$ meet at $T$. Prove that lines $DS$ and $AT$ are parallel. [i]Michael Ren[/i]

2006 Oral Moscow Geometry Olympiad, 1

The diagonals of the inscribed quadrangle $ABCD$ intersect at point $K$. Prove that the tangent at point $K$ to the circle circumscribed around the triangle $ABK$ is parallel to $CD$. (A Zaslavsky)

2021 Canadian Junior Mathematical Olympiad, 3

Tags: geometry
Let $ABCD$ be a trapezoid with $AB$ parallel to $CD$, $|AB|>|CD|$, and equal edges $|AD|=|BC|$. Let $I$ be the center of the circle tangent to lines $AB$, $AC$ and $BD$, where $A$ and $I$ are on opposite sides of $BD$. Let $J$ be the center of the circle tangent to lines $CD$, $AC$ and $BD$, where $D$ and $J$ are on opposite sides of $AC$. Prove that $|IC|=|JB|$.

2005 iTest, 11

Tags: inradius , geometry
Find the radius of the inscribed circle of a triangle with sides of length $40$, $42$, and $58$.

2022 Saudi Arabia BMO + EGMO TST, 2.3

A rectangle $R$ is partitioned into smaller rectangles whose sides are parallel with the sides of $R$. Let $B$ be the set of all boundary points of all the rectangles in the partition, including the boundary of $R$. Let S be the set of all (closed) segments whose points belong to $B$. Let a maximal segment be a segment in $S$ which is not a proper subset of any other segment in $S$. Let an intersection point be a point in which $4$ rectangles of the partition meet. Let $m$ be the number of maximal segments, $i$ the number of intersection points and $r$ the number of rectangles. Prove that $m + i = r + 3$.

2025 Bangladesh Mathematical Olympiad, P6

Let the incircle of triangle $ABC$ touch sides $BC, CA$ and $AB$ at the points $D, E$ and $F$ respectively and let $I$ be the center of that circle. Furthermore, let $P$ be the foot of the perpendicular from point $I$ to line $AD$ and let $M$ be the midpoint of $DE$. If $N$ is the intersection point of $PM$ and $AC$, prove that $DN \parallel EF$.

2018 Kyiv Mathematical Festival, 2

Let $M$ be the intersection point of the medians $AD$ and $BE$ of a right triangle $ABC$ ($\angle C=90^\circ$), $\omega_1$ and $\omega_2$ be the circumcircles of triangles $AEM$ and $CDM.$ It is known that the circles $\omega_1$ and $\omega_2$ are tangent. Find the ratio in which the circle $\omega_2$ divides $AC.$

Kyiv City MO Juniors Round2 2010+ geometry, 2020.9.2

In the acute-angled triangle $ABC$ is drawn the altitude $CH$. A ray beginning at point $C$ that lies inside the $\angle BCA$ and intersects for second time the circles circumscribed circles of $\vartriangle BCH$ and $\vartriangle ABC$ at points $X$ and $Y$ respectively. It turned out that $2CX = CY$. Prove that the line $HX$ bisects the segment $AC$. (Hilko Danilo)

2009 Croatia Team Selection Test, 3

Tags: geometry
On sides $ AB$ and $ AC$ of triangle $ ABC$ there are given points $ D,E$ such that $ DE$ is tangent of circle inscribed in triangle $ ABC$ and $ DE \parallel BC$. Prove $ AB\plus{}BC\plus{}CA\geq 8DE$

1961 AMC 12/AHSME, 36

In triangle $ABC$ the median from $A$ is given perpendicular to the median from $B$. If $BC=7$ and $AC=6$, find the length of $AB$. ${{ \textbf{(A)}\ 4\qquad\textbf{(B)}\ \sqrt{17} \qquad\textbf{(C)}\ 4.25\qquad\textbf{(D)}\ 2\sqrt{5} }\qquad\textbf{(E)}\ 4.5} $

2018 Harvard-MIT Mathematics Tournament, 9

Tags: geometry
Circle $\omega_1$ of radius $1$ and circle $\omega_2$ of radius $2$ are concentric. Godzilla inscribes square $CASH$ in $\omega_1$ and regular pentagon $MONEY$ in $\omega_2$. It then writes down all 20 (not necessarily distinct) distances between a vertex of $CASH$ and a vertex of $MONEY$ and multiplies them all together. What is the maximum possible value of his result?

1999 Brazil Team Selection Test, Problem 3

Tags: triangle , geometry
Let $BD$ and $CE$ be the bisectors of the interior angles $\angle B$ and $\angle C$, respectively ($D\in AC$, $E\in AB$). Consider the circumcircle of $ABC$ with center $O$ and the excircle corresponding to the side $BC$ with center $I_a$. These two circles intersect at points $P$ and $Q$. (a) Prove that $PQ$ is parallel to $DE$. (b) Prove that $I_aO$ is perpendicular to $DE$.

2007 China Team Selection Test, 2

Let $ I$ be the incenter of triangle $ ABC.$ Let $ M,N$ be the midpoints of $ AB,AC,$ respectively. Points $ D,E$ lie on $ AB,AC$ respectively such that $ BD\equal{}CE\equal{}BC.$ The line perpendicular to $ IM$ through $ D$ intersects the line perpendicular to $ IN$ through $ E$ at $ P.$ Prove that $ AP\perp BC.$

2014 Korea National Olympiad, 3

Tags: incenter , geometry
$AB$ is a chord of $O$ and $AB$ is not a diameter of $O$. The tangent lines to $O$ at $A$ and $B$ meet at $C$. Let $M$ and $N$ be the midpoint of the segments $AC$ and $BC$, respectively. A circle passing through $C$ and tangent to $O$ meets line $MN$ at $P$ and $Q$. Prove that $\angle PCQ = \angle CAB$.

2006 Iran MO (3rd Round), 7

Tags: geometry
We have finite number of distinct shapes in plane. A "[i]convex Kearting[/i]" of these shapes is covering plane with convex sets, that each set consists exactly one of the shapes, and sets intersect at most in border. [img]http://aycu30.webshots.com/image/4109/2003791140004582959_th.jpg[/img] In which case Convex kearting is possible? 1) Finite distinct points 2) Finite distinct segments 3) Finite distinct circles

2016 ASMT, 5

Plane $A$ passes through the points $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$. Plane $B$ is parallel to plane $A$, but passes through the point $(1, 0, 1)$. Find the distance between planes $A$ and $B$.

1988 Austrian-Polish Competition, 6

Three rays $h_1,h_2,h_3$ emanating from a point $O$ are given, not all in the same plane. Show that if for any three points $A_1,A_2,A_3$ on $h_1,h_2,h_3$ respectively, distinct from $O$, the triangle $A_1A_2A_3$ is acute-angled, then the rays $h_1,h_2,h_3$ are pairwise orthogonal.

2011 Dutch IMO TST, 3

The circles $\Gamma_1$ and $\Gamma_2$ intersect at $D$ and $P$. The common tangent line of the two circles closest to point $D$ touches $\Gamma_1$ in A and $\Gamma_2$ in $B$. The line $AD$ intersects $\Gamma_2$ for the second time in $C$. Let $M$ be the midpoint of line segment $BC$. Prove that $\angle DPM = \angle BDC$.

1978 Romania Team Selection Test, 7

[b]a)[/b] Prove that for any natural number $ n\ge 1, $ there is a set $ \mathcal{M} $ of $ n $ points from the Cartesian plane such that the barycenter of every subset of $ \mathcal{M} $ has integral coordinates (both coordinates are integer numbers). [b]b)[/b] Show that if a set $ \mathcal{N} $ formed by an infinite number of points from the Cartesian plane is given such that no three of them are collinear, then there exists a finite subset of $ \mathcal{N} , $ the barycenter of which has non-integral coordinates.

the 9th XMO, 2

Given a $\triangle ABC$ with circumcenter $O$ and orthocenter $H(O\ne H)$. Denote the midpoints of $BC, AC$ as $D, E$ and let $D', E'$ be the reflections of $D, E$ w.r.t. point $H$, respectively. If lines $AD'$ and $BE'$ meet at $K$, compute $\frac{KO}{KH}$.

1999 Greece National Olympiad, 3

In an acute-angled triangle $ABC$, $AD,BE$ and $CF$ are the altitudes and $H$ the orthocentre. Lines $EF$ and $BC$ meet at $N$. The line passing through $D$ and parallel to $FE$ meets lines $AB$ and $AC$ at $K$ and $L$, respectively. Prove that the circumcircle of the triangle $NKL$ bisects the side $BC$.

MMPC Part II 1958 - 95, 1973

[b]p1.[/b] Solve the system of equations $$xy = 2x + 3y$$ $$yz = 2y + 3z$$ $$zx =2z+3x$$ [b]p2.[/b] For any integer $k$ greater than $1$ and any positive integer $n$ , prove that $n^k$ is the sum of $n$ consecutive odd integers. [b]p3.[/b] Determine all pairs of real numbers, $x_1$, $x_2$ with $|x_1|\le 1$ and $|x_2|\le 1$ which satisfy the inequality: $|x^2-1|\le |x-x_1||x-x_2|$ for all $x$ such that $|x| \ge 1$. [b]p4.[/b] Find the smallest positive integer having exactly $100$ different positive divisors. (The number $1$ counts as a divisor). [b]p5.[/b] $ABC$ is an equilateral triangle of side $3$ inches. $DB = AE = 1$ in. and $F$ is the point of intersection of segments $\overline{CD}$ and $\overline{BE}$ . Prove that $\overline{AF} \perp \overline{CD}$. [img]https://cdn.artofproblemsolving.com/attachments/f/a/568732d418f2b1aa8a4e8f53366df9fbc74bdb.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].