This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1975 Bulgaria National Olympiad, Problem 2

Let $F$ be a polygon the boundary of which is a broken line with vertices in the knots (units) of a given in advance regular square network. If $k$ is the count of knots of the network situated over the boundary of $F$, and $\ell$ is the count of the knots of the network lying inside $F$, prove that if the surface of every square from the network is $1$, then the surface $S$ of $F$ is calculated with the formulae: $$S=\frac k2+\ell-1$$ [i]V. Chukanov[/i]

2015 BMT Spring, 10

Tags: geometry
Let $ABC$ be a triangle with points $E, F$ on $CA$, $AB$, respectively. Circle $C_1$ passes through $E, F$ and is tangent to segment $BC$ at $D$. Suppose that $AE = AF = EF = 3$, $BF = 1$, and $CE = 2$. What is $\frac{ED^2}{F D^2}$ ?

2002 India IMO Training Camp, 13

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

2018 Saint Petersburg Mathematical Olympiad, 1

Let $l$ some line, that is not parallel to the coordinate axes. Find minimal $d$ that always exists point $A$ with integer coordinates, and distance from $A$ to $l$ is $\leq d$

2013 IFYM, Sozopol, 1

Tags: geometry
Point D is from AC of triangle ABC so that 2AD=DC. Let DE be perpendicular to BC and AE intersects BD at F. It is known that triangle BEF is equilateral. Find <ADB?

MBMT Guts Rounds, 2018

[hide=C stands for Cantor, G stands for Gauss]they had two problem sets under those two names[/hide] [u]Set 4[/u] [b]G.16[/b] A number $k$ is the product of exactly three distinct primes (in other words, it is of the form $pqr$, where $p, q, r$ are distinct primes). If the average of its factors is $66$, find $k$. [b]G.17[/b] Find the number of lattice points contained on or within the graph of $\frac{x^2}{3} +\frac{y^2}{2}= 12$. Lattice points are coordinate points $(x, y)$ where $x$ and $y$ are integers. [b]G.18 / C.23[/b] How many triangles can be made from the vertices and center of a regular hexagon? Two congruent triangles with different orientations are considered distinct. [b]G.19[/b] Cindy has a cone with height $15$ inches and diameter $16$ inches. She paints one-inch thick bands of paint in circles around the cone, alternating between red and blue bands, until the whole cone is covered with paint. If she starts from the bottom of the cone with a blue strip, what is the ratio of the area of the cone covered by red paint to the area of the cone covered by blue paint? [b]G.20 / C.25[/b] An even positive integer $n$ has an odd factorization if the largest odd divisor of $n$ is also the smallest odd divisor of n greater than 1. Compute the number of even integers $n$ less than $50$ with an odd factorization. [u] Set 5[/u] [b]G.21[/b] In the magical tree of numbers, $n$ is directly connected to $2n$ and $2n + 1$ for all nonnegative integers n. A frog on the magical tree of numbers can move from a number $n$ to a number connected to it in $1$ hop. What is the least number of hops that the frog can take to move from $1000$ to $2018$? [b]G.22[/b] Stan makes a deal with Jeff. Stan is given 1 dollar, and every day for $10$ days he must either double his money or burn a perfect square amount of money. At first Stan thinks he has made an easy $1024$ dollars, but then he learns the catch - after $10$ days, the amount of money he has must be a multiple of $11$ or he loses all his money. What is the largest amount of money Stan can have after the $10$ days are up? [b]G.23[/b] Let $\Gamma_1$ be a circle with diameter $2$ and center $O_1$ and let $\Gamma_2$ be a congruent circle centered at a point $O_2 \in \Gamma_1$. Suppose $\Gamma_1$ and $\Gamma_2$ intersect at $A$ and $B$. Let $\Omega$ be a circle centered at $A$ passing through $B$. Let $P$ be the intersection of $\Omega$ and $\Gamma_1$ other than $B$ and let $Q$ be the intersection of $\Omega$ and ray $\overrightarrow{AO_1}$. Define $R$ to be the intersection of $PQ$ with $\Gamma_1$. Compute the length of $O_2R$. [b]G.24[/b] $8$ people are at a party. Each person gives one present to one other person such that everybody gets a present and no two people exchange presents with each other. How many ways is this possible? [b]G.25[/b] Let $S$ be the set of points $(x, y)$ such that $y = x^3 - 5x$ and $x = y^3 - 5y$. There exist four points in $S$ that are the vertices of a rectangle. Find the area of this rectangle. PS. You should use hide for answers. C1-15/ G1-10 have been posted [url=https://artofproblemsolving.com/community/c3h2790674p24540132]here [/url] and C16-30/G10-15, G25-30 [url=https://artofproblemsolving.com/community/c3h2790676p24540145]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url]

2007 China Team Selection Test, 2

Let $ ABCD$ be the inscribed quadrilateral with the circumcircle $ \omega$.Let $ \zeta$ be another circle that internally tangent to $ \omega$ and to the lines $ BC$ and $ AD$ at points $ M,N$ respectively.Let $ I_1,I_2$ be the incenters of the $ \triangle ABC$ and $ \triangle ABD$.Prove that $ M,I_1,I_2,N$ are collinear.

2011 IFYM, Sozopol, 1

Let $ABCD$ be a quadrilateral inscribed in a circle $k$. Let the lines $AC\cap BD=O$, $AD\cap BC=P$, and $AB\cap CD=Q$. Line $QO$ intersects $k$ in points $M$ and $N$. Prove that $PM$ and $PN$ are tangent to $k$.

Durer Math Competition CD 1st Round - geometry, 2008.D1

Prove the following inequality if we know that $a$ and $b$ are the legs of a right triangle , and $c$ is the length of the hypotenuse of this triangle: $$3a + 4b \le 5c.$$ When does equality holds?

2023 Sharygin Geometry Olympiad, 9.1

The ratio of the median $AM$ of a triangle $ABC$ to the side $BC$ equals $\sqrt{3}:2$. The points on the sides of $ABC$ dividing these side into $3$ equal parts are marked. Prove that some $4$ of these $6$ points are concyclic.

1989 AMC 12/AHSME, 3

A square is cut into three rectangles along two lines parallel to a side, as shown. If the perimeter of each of the three rectangles is 24, then the area of the original square is [asy] draw((0,0)--(9,0)--(9,9)--(0,9)--cycle); draw((3,0)--(3,9), dashed); draw((6,0)--(6,9), dashed);[/asy] $\text{(A)} \ 24 \qquad \text{(B)} \ 36 \qquad \text{(C)} \ 64 \qquad \text{(D)} \ 81 \qquad \text{(E)} \ 96$

2022 Durer Math Competition (First Round), 1

Dorothy organized a party for the birthday of Duck Mom and she also prepared a cylindershaped cake. Since she was originally expecting to have $15$ guests, she divided the top of the cake into this many equal circular sectors, marking where the cuts need to be made. Just for fun Dorothy’s brother Donald split the top of the cake into $10$ equal circular sectors in such a way that some of the radii that he marked coincided with Dorothy’s original markings. Just before the arrival of the guests Douglas cut the cake according to all markings, and then he placed the cake into the fridge. This way they forgot about the cake and only got to eating it when only $6$ of them remained. Is it possible for them to divide the cake into $6$ equal parts without making any further cuts?

1995 AMC 12/AHSME, 5

Tags: geometry
A rectangular field is 300 feet wide and 400 feet long. Random sampling indicates that there are, on the average, three ants per square inch through out the field. [12 inches = 1 foot.] Of the following, the number that most closely approximates the number of ants in the field is $\textbf{(A)}\ \text{500 thousand} \qquad \textbf{(B)}\ \text{5 million} \qquad \textbf{(C)}\ \text{50 million} \qquad \textbf{(D)}\ \text{500 million} \qquad \textbf{(E)}\ \text{5 billion}$

2019 BMT Spring, 5

Tags: geometry , angle , area
Point $P$ is $\sqrt3$ units away from plane $A$. Let $Q$ be a region of $A$ such that every line through $P$ that intersects $A$ in $Q$ intersects $A$ at an angle between $30^o$ and $60^o$ . What is the largest possible area of $Q$?

2005 QEDMO 1st, 2 (G2)

Let $ABC$ be a triangle. Let $C^{\prime}$ and $A^{\prime}$ be the reflections of its vertices $C$ and $A$, respectively, in the altitude of triangle $ABC$ issuing from $B$. The perpendicular to the line $BA^{\prime}$ through the point $C^{\prime}$ intersects the line $BC$ at $U$; the perpendicular to the line $BC^{\prime}$ through the point $A^{\prime}$ intersects the line $BA$ at $V$. Prove that $UV \parallel CA$. Darij

2006 Mid-Michigan MO, 7-9

[b]p1.[/b] Find all solutions $a, b, c, d, e, f$ if it is known that they represent distinct digits and satisfy the following: $\begin{tabular}{ccccc} & a & b & c & a \\ + & & d & d & e \\ & & & d & e \\ \hline d & f & f & d & d \\ \end{tabular}$ [b]p2.[/b] Explain whether it possible that the sum of two squares of positive whole numbers has all digits equal to $1$: $$n^2 + m^2 = 111...111$$ [b]p3. [/b]Two players play the following game on an $8 \times 8$ chessboard. The first player can put a rook on an arbitrary square. Then the second player can put another rook on a free square that is not controlled by the first rook. Then the first player can put a new rook on a free square that is not controlled by the rooks on the board. Then the second player can do the same, etc. A player who cannot put a new rook on the board loses the game. Who has a winning strategy? [b]p4.[/b] Show that the difference $9^{2008} - 7^{2008}$ is divisible by $10$. [b]p5.[/b] Is it possible to find distict positive whole numbers $a, b, c, d, e$ such that $$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}= 1?$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Moldova EGMO TST, 2

In the acute triangle $ABC$ point $M$ is the midpoint of $AC$ and $N$ is the foot of the height of $A$ on $BC$. Point $D$ is on the circumcircle of triangle $BMN$ such that $AD$ and $BM$ are parallel and $AC$ is between the points $B$ and $D$. Prove that $BD=BC$.

Indonesia MO Shortlist - geometry, g3

Given a quadrilateral $ABCD$ inscribed in circle $\Gamma$.From a point P outside $\Gamma$, draw tangents $PA$ and $PB$ with $A$ and $B$ as touspoints. The line $PC$ intersects $\Gamma$ at point $D$. Draw a line through $B$ parallel to $PA$, this line intersects $AC$ and $AD$ at points $E$ and $F$ respectively. Prove that $BE = BF$.

1986 Balkan MO, 1

A line passing through the incenter $I$ of the triangle $ABC$ intersect its incircle at $D$ and $E$ and its circumcircle at $F$ and $G$, in such a way that the point $D$ lies between $I$ and $F$. Prove that: $DF \cdot EG \geq r^{2}$.

2010 South africa National Olympiad, 5

Tags: geometry
(a) A set of lines is drawn in the plane in such a way that they create more than 2010 intersections at a particular angle $\alpha$. Determine the smallest number of lines for which this is possible. (b) Determine the smallest number of lines for which it is possible to obtain exactly 2010 such intersections.

2000 AIME Problems, 10

A circle is inscribed in quadrilateral $ABCD,$ tangent to $\overline{AB}$ at $P$ and to $\overline{CD}$ at $Q.$ Given that $AP=19, PB=26, CQ=37,$ and $QD=23,$ find the square of the radius of the circle.

2004 Harvard-MIT Mathematics Tournament, 5

Tags: geometry
Find the area of the region of the $xy$-plane defined by the inequality $|x|+|y|+|x+y| \le 1$.

1986 Poland - Second Round, 6

In the triangle $ ABC $, the point $ A' $ on the side $ BC $, the point $ B' $ on the side $ AC $, the point $ C' $ on the side $ AB $ are chosen so that the straight lines $ AA' $, $ CC' $ intersect at one point, i.e. equivalently $ |BA'| \cdot |CB'| \cdot |AC'| = |CA'| \cdot |AB'| \cdot |BC'| $. Prove that the area of triangle $ A'B'C' $ is not greater than $ 1/4 $ of the area of triangle $ ABC $.

2015 Indonesia MO Shortlist, G1

Given a cyclic quadrilateral $ABCD$ so that $AB = AD$ and $AB + BC <CD$. Prove that the angle $ABC$ is more than $120$ degrees.

2002 AMC 12/AHSME, 24

Find the number of ordered pairs of real numbers $ (a,b)$ such that $ (a \plus{} bi)^{2002} \equal{} a \minus{} bi$. $ \textbf{(A)}\ 1001\qquad \textbf{(B)}\ 1002\qquad \textbf{(C)}\ 2001\qquad \textbf{(D)}\ 2002\qquad \textbf{(E)}\ 2004$