This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2015 Romania Team Selection Tests, 1

Let $ABC$ and $ABD$ be coplanar triangles with equal perimeters. The lines of support of the internal bisectrices of the angles $CAD$ and $CBD$ meet at $P$. Show that the angles $APC$ and $BPD$ are congruent.

2016 Kosovo National Mathematical Olympiad, 4

Tags: geometry
In all rectangles with same diagonal $d$ find that one with bigger area .

1991 Brazil National Olympiad, 5

Tags: geometry
$P_0 = (1,0), P_1 = (1,1), P_2 = (0,1), P_3 = (0,0)$. $P_{n+4}$ is the midpoint of $P_nP_{n+1}$. $Q_n$ is the quadrilateral $P_{n}P_{n+1}P_{n+2}P_{n+3}$. $A_n$ is the interior of $Q_n$. Find $\cap_{n \geq 0}A_n$.

2023 Nordic, P4

Tags: geometry
Let $ABC$ be a triangle, and $M$ the midpoint of the side $BC$. Let $E$ and $F$ be points on the sides $AC$ and $AB$, respectively, so that $ME=MF$. Let $D$ be the second intersection of the circumcircle of $MEF$ and the side $BC$. Consider the lines $\ell_D$, $\ell_E$ and $\ell_F$ through $D, E$ and $F$, respectively, such that $\ell_D \perp BC$, $\ell_E \perp AC$ and $\ell_F \perp AB$. Show that $\ell_D, \ell_E$ and $\ell_F$ are concurrent.

2024 Korea - Final Round, P4

For a triangle $ABC$, $O$ is the circumcircle and $D$ is a point on ray $BA$. $E$ and $F$ are points on $O$ so that $DE$ and $DF$ are tangent to $O$ and $EF$ cuts $AC$ at $T(\neq C)$. $P(\neq B,C)$ is a point on the arc $BC$ not containing $A$, and $DP$ cuts $O$ at $Q (\neq P)$. Let $BQ$ and $DT$ meets on $X (\neq Q)$, and $PT$ cuts $O$ at $Y (\neq P)$. Prove that $C,X,Y$ are collinear.

2001 Rioplatense Mathematical Olympiad, Level 3, 2

Let $ABC$ be an acute triangle and $A_1, B_1$ and $C_1$, points on the sides $BC, CA$ and $AB$, respectively, such that $CB_1 = A_1B_1$ and $BC_1 = A_1C_1$. Let $D$ be the symmetric of $A_1$ with respect to $B_1C_1, O$ and $O_1$ are the circumcenters of triangles $ABC$ and $A_1B_1C_1$, respectively. If $A \ne D, O \ne O_1$ and $AD$ is perpendicular to $OO_1$, prove that $AB = AC$.

2022 Kosovo National Mathematical Olympiad, 2

Tags: geometry
Let $ABC$ be an isosceles triangle with $CA=CB$ and $\angle ACB=20^{\circ}$. Let $D$ be a point on side $CA$ such that $\angle ADB=30^{\circ}$. Show that $AB=CD$.

2018 Malaysia National Olympiad, A1

Tags: geometry
A cuboid has an integer volume. Three of the faces have different areas, namely $7, 27$, and $L$. What is the smallest possible integer value for $L$?

2024 USA TSTST, 1

Tags: geometry
For every ordered pair of integers $(i,j)$, not necessarily positive, we wish to select a point $P_{i,j}$ in the Cartesian plane whose coordinates lie inside the unit square defined by \[ i < x < i+1, \qquad j < y < j+1. \] Find all real numbers $c > 0$ for which it's possible to choose these points such that for all integers $i$ and $j$, the (possibly concave or degenerate) quadrilateral $P_{i,j} P_{i+1,j} P_{i+1,j+1} P_{i,j+1}$ has perimeter strictly less than $c$. [i]Karthik Vedula[/i]

2005 Sharygin Geometry Olympiad, 9.3

Tags: midpoint , locus , arc , geometry
Given a circle and points $A, B$ on it. Draw the set of midpoints of the segments, one of the ends of which lies on one of the arcs $AB$, and the other on the second.

2024 Korea Junior Math Olympiad (First Round), 20.

There is a $\triangle ABC$ which $\angle C=90$, and $\bar{AB}=36$ On the circumcircle of $\triangle ABC$, there is $\overarc{BC}$ which does not include point $A$. D is on $\overarc{BC}$. It satisfies $2\times\angle CAD = \angle BAD $ $E: \bar{AD}\cap\bar{BC} $ $ \bar{AE}=20 $ Find $ \bar{BD}^2 $

2001 Tournament Of Towns, 3

Points $X$ and $Y$ are chosen on the sides $AB$ and $BC$ of the triangle $\triangle ABC$. The segments $AY$ and $CX$ intersect at the point $Z$. Given that $AY = YC$ and $AB = ZC$, prove that the points $B$, $X$, $Z$, and $Y$ lie on the same circle.

2013 ITAMO, 2

Tags: geometry
In triangle $ABC$, suppose we have $a> b$, where $a=BC$ and $b=AC$. Let $M$ be the midpoint of $AB$, and $\alpha, \beta$ are inscircles of the triangles $ACM$ and $BCM$ respectively. Let then $A'$ and $B'$ be the points of tangency of $\alpha$ and $\beta$ on $CM$. Prove that $A'B'=\frac{a - b}{2}$.

2015 BMT Spring, 9

Tags: geometry
Let $ABC$ be a triangle. Suppose that a circle with diameter $BC$ intersects segments $CA$, $AB$ at $E, F$, respectively. Let $D$ be the midpoint of $BC$. Suppose that $AD$ intersects $EF$ at $X$. If $AB =\sqrt9$, $AC =\sqrt{10}$, and $BC =\sqrt{11}$, what is $\frac{EX}{XF}$?

2023 Indonesia TST, G

Tags: geometry
Given circle $\Omega_1$ and $\Omega_2$ interesting at $P$ and $Q$. $X$ and $Y$ on line $PQ$ such that $X, P, Q, Y$ in that order. Point $A$ and $B$ on $\Omega_1$ and $\Omega_2$ respectively such that the intersections of $\Omega_1$ with $AX$ and $AY$, intersections of $\Omega_2$ with $BX$ and $BY$ are all in one line. $l$. Prove that $AB, l$ and perpendicular bisector of $PQ$ are concurrent.

2019 Thailand TST, 3

Tags: geometry
Let $O$ be the circumcentre, and $\Omega$ be the circumcircle of an acute-angled triangle $ABC$. Let $P$ be an arbitrary point on $\Omega$, distinct from $A$, $B$, $C$, and their antipodes in $\Omega$. Denote the circumcentres of the triangles $AOP$, $BOP$, and $COP$ by $O_A$, $O_B$, and $O_C$, respectively. The lines $\ell_A$, $\ell_B$, $\ell_C$ perpendicular to $BC$, $CA$, and $AB$ pass through $O_A$, $O_B$, and $O_C$, respectively. Prove that the circumcircle of triangle formed by $\ell_A$, $\ell_B$, and $\ell_C$ is tangent to the line $OP$.

2016 BmMT, Team Round

[b]p1.[/b] BmMT is in a week, and we don’t have any problems! Let’s write $1$ on the first day, $2$ on the second day, $4$ on the third, $ 8$ on the fourth, $16$ on the fifth, $32$ on the sixth, and $64$ on the seventh. After seven days, how many problems will we have written in total? [b]p2.[/b] $100$ students are taking a ten-point exam. $50$ students scored $8$ points, $30$ students scored $7$ points, and the rest scored $9$ points. What is the average score for the exam? [b]p3.[/b] Rebecca has four pairs of shoes. Rebecca may or may not wear matching shoes. However, she will always use a left-shoe for her left foot and a right-shoe for her right foot. How many ways can Rebecca wear shoes? [b]p4.[/b] A council of $111$ mathematicians voted on whether to hold their conference in Beijing or Shanghai. The outcome of an initial vote was $70$ votes in favor of Beijing, and 41 votes in favor of Shanghai. If the vote were to be held again, what is the minimum number of mathematicians that would have to change their votes in order for Shanghai to win a majority of votes? [b]p5.[/b] What is the area of the triangle bounded by the line $20x + 16y = 160$, the $x$-axis, and the $y$-axis? [b]p6.[/b] Suppose that $3$ runners start running from the start line around a circular $800$-meter track and that their speeds are $100$, $160$, and $200$ meters per minute, respectively. How many minutes will they run before all three are next at the start line at the same time? [b]p7.[/b] Brian’s lawn is in the shape of a circle, with radius $10$ meters. Brian can throw a frisbee up to $50$ meters from where he stands. What is the area of the region (in square meters) in which the frisbee can land, if Brian can stand anywhere on his lawn? [b]p8.[/b] A seven digit number is called “bad” if exactly four of its digits are $0$ and the rest are odd. How many seven digit numbers are bad? [b]p9.[/b] Suppose you have a $3$-digit number with only even digits. What is the probability that twice that number also has only even digits? [b]p10.[/b] You have a flight on Air China from Beijing to New York. The flight will depart any time between $ 1$ p.m. and $6$ p.m., uniformly at random. Your friend, Henry, is flying American Airlines, also from Beijing to New York. Henry’s flight will depart any time between $3$ p.m. and $5$ p.m., uniformly at random. What is the probability that Henry’s flight departs before your flight? [b]p11.[/b] In the figure below, three semicircles are drawn outside the given right triangle. Given the areas $A_1 = 17$ and $A_2 = 14$, find the area $A_3$. [img]https://cdn.artofproblemsolving.com/attachments/4/4/28393acb3eba83a5a489e14b30a3e84ffa60fb.png[/img] [b]p12.[/b] Consider a circle of radius $ 1$ drawn tangent to the positive $x$ and $y$ axes. Now consider another smaller circle tangent to that circle and also tangent to the positive $x$ and $y$ axes. Find the radius of the smaller circle. [img]https://cdn.artofproblemsolving.com/attachments/7/4/99b613d6d570db7ee0b969f57103d352118112.png[/img] [b]p13.[/b] The following expression is an integer. Find this integer: $\frac{\sqrt{20 + 16\frac{\sqrt{20+ 16\frac{20 + 16...}{2}}}{2}}}{2}$ [b]p14.[/b] Let $2016 = a_1 \times a_2 \times ... \times a_n$ for some positive integers $a_1, a_2, ... , a_n$. Compute the smallest possible value of $a_1 + a_2 + ...+ a_n$. [b]p15.[/b] The tetranacci numbers are defined by the recurrence $T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4}$ and $T_0 = T_1 = T_2 = 0$ and $T_3 = 1$. Given that $T_9 = 29$ and $T_{14} = 773$, calculate $T_{15}$. [b]p16.[/b] Find the number of zeros at the end of $(2016!)^{2016}$. Your answer should be an integer, not its prime factorization. [b]p17.[/b] A DJ has $7$ songs named $1, 2, 3, 4, 5, 6$, and $7$. He decides that no two even-numbered songs can be played one after the other. In how many different orders can the DJ play the $7$ songs? [b]p18.[/b] Given a cube, how many distinct ways are there (using $6$ colors) to color each face a distinct color? Colorings are distinct if they cannot be transformed into one another by a sequence of rotations. [b]p19. [/b]Suppose you have a triangle with side lengths $3, 4$, and $5$. For each of the triangle’s sides, draw a square on its outside. Connect the adjacent vertices in order, forming $3$ new triangles (as in the diagram). What is the area of this convex region? [img]https://cdn.artofproblemsolving.com/attachments/4/c/ac4dfb91cd055badc07caface93761453049fa.png[/img] [b]p20.[/b] Find $x$ such that $\sqrt{c +\sqrt{c - x}} = x$ when $c = 4$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1995 Mexico National Olympiad, 3

$A, B, C, D$ are consecutive vertices of a regular $7$-gon. $AL$ and $AM$ are tangents to the circle center $C$ radius $CB$. $N$ is the intersection point of $AC$ and $BD$. Show that $L, M, N$ are collinear.

2017 Azerbaijan Junior National Olympiad, P4

A Rhombus and an Isosceles trapezoid that has same area is drawn in the same circle's outside. Compare their acute angles \\ (explain your answer)

Kyiv City MO Juniors Round2 2010+ geometry, 2020.8.2

Given a convex quadrilateral $ABCD$, in which $\angle CBD = 90^o$, $\angle BCD =\angle CAD$ and $AD= 2BC$. Prove that $CA =CD$. (Anton Trygub)

2002 Spain Mathematical Olympiad, Problem 6

In a regular polygon $H$ of $6n+1$ sides ($n$ is a positive integer), we paint $r$ vertices red, and the rest blue. Demonstrate that the number of isosceles triangles that have three of their vertices of the same color does not depend on the way we distribute the colors on the vertices of $H$.

2022 SAFEST Olympiad, 5

Let $ABCD$ be a convex quadrilateral such that the circle with diameter $AB$ is tangent to the line $CD$, and the circle with diameter $CD$ is tangent to the line $AB$. Prove that the two intersection points of these circles and the point $AC \cap BD$ are collinear.

2009 Sharygin Geometry Olympiad, 15

Given a circle and a point $ C$ not lying on this circle. Consider all triangles $ ABC$ such that points $ A$ and $ B$ lie on the given circle. Prove that the triangle of maximal area is isosceles.

1989 IMO Longlists, 87

Consider in a plane $ P$ the points $ O,A_1,A_2,A_3,A_4$ such that \[ \sigma(OA_iA_j) \geq 1 \quad \forall i, j \equal{} 1, 2, 3, 4, i \neq j.\] where $ \sigma(OA_iA_j)$ is the area of triangle $ OA_iA_j.$ Prove that there exists at least one pair $ i_0, j_0 \in \{1, 2, 3, 4\}$ such that \[ \sigma(OA_iA_j) \geq \sqrt{2}.\]

2001 Belarusian National Olympiad, 3

Tags: geometry
Three distinct points $A$, $B$, and $N$ are marked on the line $l$, with $B$ lying between $A$ and $N$. For an arbitrary angle $\alpha \in (0,\frac{\pi}{2})$, points $C$ and $D$ are marked in the plane on the same side of $l$ such that $N$, $C$, and $D$ are collinear; $\angle NAD = \angle NBC = \alpha$; and $A$, $B$, $C$, and $D$ are concyclic. Find the locus of the intersection points of the diagonals of $ABCD$ as $\alpha$ varies between $0$ and $\frac{\pi}{2}$.