Found problems: 25757
1997 Brazil National Olympiad, 4
Let $V_n=\sqrt{F_n^2+F_{n+2}^2}$, where $F_n$ is the Fibonacci sequence
($F_1=F_2=1,F_{n+2}=F_{n+1}+F_{n}$)
Show that $V_n,V_{n+1},V_{n+2}$ are the sides of a triangle with area $1/2$
2014 IFYM, Sozopol, 3
Nikolai and Peter are dividing a cake in the shape of a triangle. Firstly, Nikolai chooses one point $P$ inside the triangle and after that Peter cuts the cake by any line he chooses through $P$, then takes one of the pieces and leaves the other one for Nikolai. What’s the greatest portion of the cake Nikolai can be sure he could take, if he chooses $P$ in the best way possible?
2006 Vietnam National Olympiad, 3
Let $m$, $n$ be two positive integers greater than 3. Consider the table of size $m\times n$ ($m$ rows and $n$ columns) formed with unit squares. We are putting marbles into unit squares of the table following the instructions:
$-$ each time put 4 marbles into 4 unit squares (1 marble per square) such that the 4 unit squares formes one of the followings 4 pictures (click [url=http://www.mathlinks.ro/Forum/download.php?id=4425]here[/url] to view the pictures).
In each of the following cases, answer with justification to the following question: Is it possible that after a finite number of steps we can set the marbles into all of the unit squares such that the numbers of marbles in each unit square is the same?
a) $m=2004$, $n=2006$;
b) $m=2005$, $n=2006$.
2004 National Olympiad First Round, 25
Let $D$ be the foot of the internal angle bisector of the angle $A$ of a triangle $ABC$. Let $E$ be a point on side $[AC]$ such that $|CE|= |CD|$ and $|AE|=6\sqrt 5$; let $F$ be a point on the ray $[AB$ such that $|DB|=|BF|$ and $|AB|<|AF| = 8\sqrt 5$. What is $|AD|$?
$
\textbf{(A)}\ 10\sqrt 5
\qquad\textbf{(B)}\ 8
\qquad\textbf{(C)}\ 4\sqrt{15}
\qquad\textbf{(D)}\ 7\sqrt 5
\qquad\textbf{(E)}\ \text{None of above}
$
LMT Team Rounds 2021+, 14
In a cone with height $3$ and base radius $4$, let $X$ be a point on the circumference of the base. Let $Y$ be a point on the surface of the cone such that the distance from $Y$ to the vertex of the cone is $2$, and $Y$ is diametrically opposite $X$ with respect to the base of the cone. The length of the shortest path across the surface of the cone from $X$ to $Y$ can be expressed as $\sqrt{a +\sqrt{b}}$, where a and b are positive integers. Find $a +b$.
Kharkiv City MO Seniors - geometry, 2012.11.4
The incircle $\omega$ of triangle $ABC$ touches its sides $BC, CA$ and $AB$ at points $D, E$ and $E$, respectively. Point $G$ lies on circle $\omega$ in such a way that $FG$ is a diameter. Lines $EG$ and $FD$ intersect at point $H$. Prove that $AB \parallel CH$.
2015 Estonia Team Selection Test, 4
Altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at $H$. Let $C_1 (H,HE)$ and $C_2(B,BE)$ be two circles tangent at $AC$ at point $E$. Let $P\ne E$ be the second point of tangency of the circle $C_1 (H,HE)$ with its tangent line going through point $C$, and $Q\ne E$ be the second point of tangency of the circle $C_2(B,BE)$ with its tangent line going through point $C$. Prove that points $D, P$, and $Q$ are collinear.
2007 Baltic Way, 14
In a convex quadrilateral $ABCD$ we have $ADC = 90^{\circ}$. Let $E$ and $F$ be the projections of $B$ onto the lines $AD$ and $AC$, respectively. Assume that $F$ lies between $A$ and $C$, that $A$ lies between $D$ and $E$, and that the line $EF$ passes through the midpoint of the segment $BD$. Prove that the quadrilateral $ABCD$ is cyclic.
2016 Mediterranean Mathematics Olympiad, 1
Let $ABC$ be a triangle. Let $D$ be the intersection point of the angle bisector at $A$ with $BC$.
Let $T$ be the intersection point of the tangent line to the circumcircle of triangle $ABC$ at point $A$ with the line through $B$ and $C$.
Let $I$ be the intersection point of the orthogonal line to $AT$ through point $D$ with the altitude $h_a$ of the triangle at point $A$.
Let $P$ be the midpoint of $AB$, and let $O$ be the circumcenter of triangle $ABC$.
Let $M$ be the intersection point of $AB$ and $TI$, and let $F$ be the intersection point of $PT$ and $AD$.
Prove: $MF$ and $AO$ are orthogonal to each other.
ABMC Speed Rounds, 2022
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] Alisha has $6$ cupcakes and Tyrone has $10$ brownies. Tyrone gives some of his brownies to Alisha so that she has three times as many desserts as Tyrone. How many desserts did Tyrone give to Alisha?
[b]p2.[/b] Bisky adds one to her favorite number. She then divides the result by $2$, and gets $56$. What is her favorite number?
[b]p3.[/b] What is the maximum number of points at which a circle and a square can intersect?
[b]p4.[/b] An integer $N$ leaves a remainder of 66 when divided by $120$. Find the remainder when $N$ is divided by $24$.
[b]p5.[/b] $7$ people are chosen to run for student council. How many ways are there to pick $1$ president, $1$ vice president, and $1$ secretary?
[b]p6.[/b] Anya, Beth, Chloe, and Dmitri are all close friends, and like to make group chats to talk. How many group chats can be made if Dmitri, the gossip, must always be in the group chat and Anya is never included in them? Group chats must have more than one person.
[b]p7.[/b] There exists a telephone pole of height $24$ feet. From the top of this pole, there are two wires reaching the ground in opposite directions, with one wire $25$ feet, and the other wire 40 feet. What is the distance (in feet) between the places where the wires hit the ground?
[b]p8.[/b] Tarik is dressing up for a job-interview. He can wear a chill, business, or casual outfit. If he wears a chill oufit, he must wear a t-shirt, shorts, and flip-flops. He has eight of the first, seven of the second, and three of the third. If he wears a business outfit, he must wear a blazer, a tie, and khakis; he has two of the first, six of the second, and five of the third; finally, he can also choose the casual style, for which he has three hoodies, nine jeans, and two pairs of sneakers. How many different combinations are there for his interview?
[b]p9.[/b] If a non-degenerate triangle has sides $11$ and $13$, what is the sum of all possibilities for the third side length, given that the third side has integral length?
[b]p10.[/b] An unknown disease is spreading fast. For every person who has the this illness, it is spread on to $3$ new people each day. If Mary is the only person with this illness at the start of Monday, how many people will have contracted the illness at the end of Thursday?
[b]p11.[/b] Gob the giant takes a walk around the equator on Mars, completing one lap around Mars. If Gob’s head is $\frac{13}{\pi}$ meters above his feet, how much farther (in meters) did his head travel than his feet?
[b]p12.[/b] $2022$ leaves a remainder of $2$, $6$, $9$, and $7$ when divided by $4$, $7$, $11$, and $13$ respectively. What is the next positive integer which has the same remainders to these divisors?
[b]p13.[/b] In triangle $ABC$, $AB = 20$, $BC = 21$, and $AC = 29$. Let D be a point on $AC$ such that $\angle ABD = 45^o$. If the length of $AD$ can be represented as $\frac{a}{b}$ , what is $a + b$?
[b]p14.[/b] Find the number of primes less than $100$ such that when $1$ is added to the prime, the resulting number has $3$ divisors.
[b]p15.[/b] What is the coefficient of the term $a^4z^3$ in the expanded form of $(z - 2a)^7$?
[b]p16.[/b] Let $\ell$ and $m$ be lines with slopes $-2$, $1$ respectively. Compute $|s_1 \cdot s_2|$ if $s_1$, $s_2$ represent the slopes of the two distinct angle bisectors of $\ell$ and $m$.
[b]p17.[/b] R1D2, Lord Byron, and Ryon are creatures from various planets. They are collecting monkeys for King Avanish, who only understands octal (base $8$). R1D2 only understands binary (base $2$), Lord Byron only understands quarternary (base $4$), and Ryon only understands decimal (base $10$). R1D2 says he has $101010101$ monkeys and adds his monkey to the pile. Lord Byron says he has $3231$ monkeys and adds them to the pile. Ryon says he has $576$ monkeys and adds them to the pile. If King Avanish says he has $x$ monkeys, what is the value of $x$?
[b]p18.[/b] A quadrilateral is defined by the origin, $(3, 0)$, $(0, 10)$, and the vertex of the graph of $y = x^2 -8x+22$. What is the area of this quadrilateral?
[b]p19.[/b] There is a sphere-container, filled to the brim with fruit punch, of diameter $6$. The contents of this container are poured into a rectangular prism container, again filled to the brim, of dimensions $2\pi$ by $4$ by $3$. However, there is an excess amount in the original container. If all the excess drink is poured into conical containers with diameter $4$ and height $3$, how many containers will be used?
[b]p20.[/b] Brian is shooting arrows at a target, made of concurrent circles of radius $1$, $2$, $3$, and $4$. He gets $10$ points for hitting the innermost circle, $8$ for hitting between the smallest and second smallest circles, $5$ for between the second and third smallest circles, $2$ points for between the third smallest and outermost circle, and no points for missing the target. Assume for each shot he takes, there is a $20\%$ chance Brian will miss the target, but otherwise the chances of hitting each target are proportional to the area of the region. The chance that after three shots, Brian will have scored $15$ points can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$.
[b]p21.[/b] What is the largest possible integer value of $n$ such that $\frac{2n^3+n^2+7n-15}{2n+1}$ is an integer?
[b]p22.[/b] Let $f(x, y) = x^3 + x^2y + xy^2 + y^3$. Compute $f(0, 2) + f(1, 3) +... f(9, 11).$
[b]p23.[/b] Let $\vartriangle ABC$ be a triangle. Let $AM$ be a median from $A$. Let the perpendicular bisector of segment $\overline{AM}$ meet $AB$ and $AC$ at $D$, $E$ respectively. Given that $AE = 7$, $ME = MC$, and $BDEC$ is cyclic, then compute $AM^2$.
[b]p24.[/b] Compute the number of ordered triples of positive integers $(a, b, c)$ such that $a \le 10$, $b \le 11$, $c \le 12$ and $a > b - 1$ and $b > c - 1$.
[b]p25.[/b] For a positive integer $n$, denote by $\sigma (n)$ the the sum of the positive integer divisors of $n$. Given that $n + \sigma (n)$ is odd, how many possible values of $n$ are there from $1$ to $2022$, inclusive?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Indonesia TST, 3
Given a non-isosceles triangle $ABC$ with incircle $k$ with center $S$. $k$ touches the side $BC,CA,AB$ at $P,Q,R$ respectively. The line $QR$ and line $BC$ intersect at $M$. A circle which passes through $B$ and $C$ touches $k$ at $N$. The circumcircle of triangle $MNP$ intersects $AP$ at $L$. Prove that $S,L,M$ are collinear.
1965 All Russian Mathematical Olympiad, 062
What is the maximal possible length of the segment, being cut out by the sides of the triangle on the tangent to the inscribed circle, being drawn parallel to the base, if the triangle's perimeter equals $2p$?
2023 CMWMC, R1
[b]p1.[/b] Sherry starts with a three-digit positive integer. She subtracts $7$ from it, then multiplies the result by $7$, and then adds $7$ to that. If she ends up with $2023$, what number did she start with?
[b]p2.[/b] Square $ABCD$ has side length $1$. Point $X$ lies on $\overline{AB}$ such that $\frac{AX}{XB} = 2$, and point $Y$ lies on $\overline{DX}$ such that $\frac{DY}{YX} = 3$. Compute the area of triangle $DAY$ .
[b]p3.[/b] A fair six-sided die is labeled $1-6$ such that opposite faces sum to $7$. The die is rolled, but before you can look at the outcome, the die gets tipped over to an adjacent face. If the new face shows a $4$, what is the probability the original roll was a $1$?
PS. You should use hide for answers.
2004 All-Russian Olympiad Regional Round, 10.8
Given natural numbers $p < k < n$. On an endless checkered plane some cells are marked so that in any rectangle $(k + 1) \times n$ ($n$ cells horizontally, $k + 1$ vertically) marked exactly $p$ cells. Prove that there is a $k \times (n + 1)$ rectangle ($n + 1$ cell horizontally, $k$ - vertically), in which no less than $p + 1$ cells.
2014 India Regional Mathematical Olympiad, 5
Let $ABC$ be an acute angled triangle with $H$ as its orthocentre. For any point $P$ on the circumcircle of triangle $ABC$, let $Q$ be the point of intersection of the line $BH$ with line $AP$. Show that there is a unique point $X$ on the circumcircle of triangle $ABC$ such that for every $P$ other than $B,C$, the circumcircle of $HPQ$ passes through $X$.
1982 Polish MO Finals, 6
Prove that the sum of dihedral angles in an arbitrary tetrahedron is greater than $2\pi$
2006 Harvard-MIT Mathematics Tournament, 5
Triangle $ABC$ has side lengths $AB=2\sqrt{5}$, $BC=1$, and $CA=5$. Point $D$ is on side $AC$ such that $CD=1$, and $F$ is a point such that $BF=2$ and $CF=3$. Let $E$ be the intersection of lines $AB$ and $DF$. Find the area of $CDEB$.
1992 Tournament Of Towns, (336) 4
Three triangles $A_1A_2A_3$, $B_1B_2B_3$, $C_1C_2C_3$ are given such that their centres of gravity (intersection points of their medians) lie on a straight line, but no three of the $9$ vertices of the triangles lie on a straight line. Consider the set of $27$ triangles $A_iB_jC_k$ (where $i$, $j$, $k$ take the values $1$, $2$, $3$ independently). Prove that this set of triangles can be divided into two parts of the same total area.
(A. Andjans, Riga)
2017 CentroAmerican, 3
Let $ABC$ be a triangle and $D$ be the foot of the altitude from $A$. Let $l$ be the line that passes through the midpoints of $BC$ and $AC$. $E$ is the reflection of $D$ over $l$. Prove that the circumcentre of $\triangle ABC$ lies on the line $AE$.
1966 IMO Longlists, 60
Prove that the sum of the distances of the vertices of a regular tetrahedron from the center of its circumscribed sphere is less than the sum of the distances of these vertices from any other point in space.
1992 Baltic Way, 3
Find an infinite non-constant arithmetic progression of natural numbers such that each term is neither a sum of two squares, nor a sum of two cubes (of natural numbers).
2012 JHMT, 8
A red unit cube $ABCDEF GH$ (with $E$ below $A$, $F$ below $B$, etc.) is pushed into the corner of a room with vertex $E$ not visible, so that faces $ABF E$ and $ADHE$ are adjacent to the wall and face $EF GH$ is adjacent to the floor. A string of length $2$ is dipped in black paint, and one of its endpoints is attached to vertex $A$. How much surface area on the three visible faces of the cube can be painted black by sweeping the string over it?
2023 ELMO Shortlist, G3
Two triangles intersect to form seven finite disjoint regions, six of which are triangles with area 1. The last region is a hexagon with area \(A\). Compute the minimum possible value of \(A\).
[i]Proposed by Karthik Vedula[/i]
2003 Turkey MO (2nd round), 2
Let $ABCD$ be a convex quadrilateral and $K,L,M,N$ be points on $[AB],[BC],[CD],[DA]$, respectively. Show that,
\[
\sqrt[3]{s_{1}}+\sqrt[3]{s_{2}}+\sqrt[3]{s_{3}}+\sqrt[3]{s_{4}}\leq 2\sqrt[3]{s}
\]
where $s_1=\text{Area}(AKN)$, $s_2=\text{Area}(BKL)$, $s_3=\text{Area}(CLM)$, $s_4=\text{Area}(DMN)$ and $s=\text{Area}(ABCD)$.
DMM Team Rounds, 2017
[b]p1.[/b] What is the maximum possible value of $m$ such that there exist $m$ integers $a_1, a_2, ..., a_m$ where all the decimal representations of $a_1!, a_2!, ..., a_m!$ end with the same amount of zeros?
[b]p2.[/b] Let $f : R \to R$ be a function such that $f(x) + f(y^2) = f(x^2 + y)$, for all $x, y \in R$. Find the sum of all possible $f(-2017)$.
[b]p3. [/b] What is the sum of prime factors of $1000027$?
[b]p4.[/b] Let $$\frac{1}{2!} +\frac{2}{3!} + ... +\frac{2016}{2017!} =\frac{n}{m},$$ where $n, m$ are relatively prime. Find $(m - n)$.
[b]p5.[/b] Determine the number of ordered pairs of real numbers $(x, y)$ such that $\sqrt[3]{3 - x^3 - y^3} =\sqrt{2 - x^2 - y^2}$
[b]p6.[/b] Triangle $\vartriangle ABC$ has $\angle B = 120^o$, $AB = 1$. Find the largest real number $x$ such that $CA - CB > x$ for all possible triangles $\vartriangle ABC$.
[b]p7. [/b]Jung and Remy are playing a game with an unfair coin. The coin has a probability of $p$ where its outcome is heads. Each round, Jung and Remy take turns to flip the coin, starting with Jung in round $ 1$. Whoever gets heads first wins the game. Given that Jung has the probability of $8/15$ , what is the value of $p$?
[b]p8.[/b] Consider a circle with $7$ equally spaced points marked on it. Each point is $ 1$ unit distance away from its neighbors and labelled $0,1,2,...,6$ in that order counterclockwise. Feng is to jump around the circle, starting at the point $0$ and making six jumps counterclockwise with distinct lengths $a_1, a_2, ..., a_6$ in a way such that he will land on all other six nonzero points afterwards. Let $s$ denote the maximum value of $a_i$. What is the minimum possible value of $s$?
[b]p9. [/b]Justin has a $4 \times 4 \times 4$ colorless cube that is made of $64$ unit-cubes. He then colors $m$ unit-cubes such that none of them belong to the same column or row of the original cube. What is the largest possible value of $m$?
[b]p10.[/b] Yikai wants to know Liang’s secret code which is a $6$-digit integer $x$. Furthermore, let $d(n)$ denote the digital sum of a positive integer $n$. For instance, $d(14) = 5$ and $d(3) = 3$. It is given that $$x + d(x) + d(d(x)) + d(d(d(x))) = 999868.$$ Please find $x$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].