This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2008 AMC 10, 2

A square is drawn inside a rectangle. The ratio of the width of the rectangle to a side of the square is $ 2: 1$. The ratio of the rectangle's length to its width is $ 2: 1$. What percent of the rectangle's area is inside the square? $ \textbf{(A)}\ 12.5 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 50 \qquad \textbf{(D)}\ 75 \qquad \textbf{(E)}\ 87.5$

1994 Taiwan National Olympiad, 1

Let $ABCD$ be a quadrilateral with $AD=BC$ and $\widehat{A}+\widehat{B}=120^{0}$. Let us draw equilateral $ACP,DCQ,DBR$ away from $AB$ . Prove that the points $P,Q,R$ are collinear.

2005 JHMT, 2

Tags: geometry
Regular hexagon $ABCDEF$ is inscribed in rectangle $PQRS$ with $AB = 1$, A and $B$ on side $PQ$, $C$ on side $QR$, $D$ and $E$ on side $RS$, and $F$ on side $SP$. What is the area of $PQRS$?

2014-2015 SDML (Middle School), 8

Two regular square pyramids have all edges $12$ cm in length. The pyramids have parallel bases and those bases have parallel edges, and each pyramid has its apex at the center of the other pyramid's base. What is the total number of cubic centimeters in the volume of the solid of intersection of the two pyramids?

2017 Polish Junior Math Olympiad Second Round, 5.

Does there exist a convex polyhedron in which each internal angle of each of its faces is either a right angle or an obtuse angle, and which has exactly $100$ edges? Justify your answer.

1998 National Olympiad First Round, 17

In triangle $ ABC$, internal bisector of angle $ A$ intersects with $ BC$ at $ D$. Let $ E$ be a point on $ \left[CB\right.$ such that $ \left|DE\right|\equal{}\left|DB\right|\plus{}\left|BE\right|$. The circle through $ A$, $ D$, $ E$ intersects $ AB$ at $ F$, again. If $ \left|BE\right|\equal{}\left|AC\right|\equal{}7$, $ \left|AD\right|\equal{}2\sqrt{7}$ and $ \left|AB\right|\equal{}5$, then $ \left|BF\right|$ is $\textbf{(A)}\ \frac {7\sqrt {5} }{5} \qquad\textbf{(B)}\ \sqrt {7} \qquad\textbf{(C)}\ 2\sqrt {2} \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \sqrt {10}$

DMM Team Rounds, 2018

[b]p1. [/b] If $f(x) = 3x - 1$, what is $f^6(2) = (f \circ f \circ f \circ f \circ f \circ f)(2)$? [b]p2.[/b] A frog starts at the origin of the $(x, y)$ plane and wants to go to $(6, 6)$. It can either jump to the right one unit or jump up one unit. How many ways are there for the frog to jump from the origin to $(6, 6)$ without passing through point $(2, 3)$? [b]p3.[/b] Alfred, Bob, and Carl plan to meet at a café between noon and $2$ pm. Alfred and Bob will arrive at a random time between noon and $2$ pm. They will wait for $20$ minutes or until $2$ pm for all $3$ people to show up after which they will leave. Carl will arrive at the café at noon and leave at $1:30$ pm. What is the probability that all three will meet together? [b]p4.[/b] Let triangle $ABC$ be isosceles with $AB = AC$. Let $BD$ be the altitude from $ B$ to $AC$, $E$ be the midpoint of $AB$, and $AF$ be the altitude from $ A$ to $BC$. If $AF = 8$ and the area of triangle $ACE$ is $ 8$, find the length of $CD$. [b]p5.[/b] Find the sum of the unique prime factors of $(2018^2 - 121) \cdot (2018^2 - 9)$. [b]p6.[/b] Compute the remainder when $3^{102} + 3^{101} + ... + 3^0$ is divided by $101$. [b]p7.[/b] Take regular heptagon $DUKMATH$ with side length $ 3$. Find the value of $$\frac{1}{DK}+\frac{1}{DM}.$$ [b]p8.[/b] RJ’s favorite number is a positive integer less than $1000$. It has final digit of $3$ when written in base $5$ and final digit $4$ when written in base $6$. How many guesses do you need to be certain that you can guess RJ’s favorite number? [b]p9.[/b] Let $f(a, b) = \frac{a^2+b^2}{ab-1}$ , where $a$ and $b$ are positive integers, $ab \ne 1$. Let $x$ be the maximum positive integer value of $f$, and let $y$ be the minimum positive integer value of f. What is $x - y$ ? [b]p10.[/b] Haoyang has a circular cylinder container with height $50$ and radius $5$ that contains $5$ tennis balls, each with outer-radius $5$ and thickness $1$. Since Haoyang is very smart, he figures out that he can fit in more balls if he cuts each of the balls in half, then puts them in the container, so he is ”stacking” the halves. How many balls would he have to cut up to fill up the container? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 AMC 8, 8

What is the smallest whole number larger than the perimeter of any triangle with a side of length $ 5$ and a side of length $19$? $\textbf{(A) }24\qquad\textbf{(B) }29\qquad\textbf{(C) }43\qquad\textbf{(D) }48\qquad \textbf{(E) }57$

1986 China Team Selection Test, 1

If $ABCD$ is a cyclic quadrilateral, then prove that the incenters of the triangles $ABC$, $BCD$, $CDA$, $DAB$ are the vertices of a rectangle.

2007 Princeton University Math Competition, 9

There are four spheres each of radius $1$ whose centers form a triangular pyramid where each side has length $2$. There is a 5th sphere which touches all four other spheres and has radius less than $1$. What is its radius?

MathLinks Contest 7th, 5.2

Let $ A^{\prime}$ be an arbitrary point on the side $ BC$ of a triangle $ ABC$. Denote by $ \mathcal{T}_{A}^{b}$, $ \mathcal{T}_{A}^{c}$ the circles simultanously tangent to $ AA^{\prime}$, $ A^{\prime}B$, $ \Gamma$ and $ AA^{\prime}$, $ A^{\prime}C$, $ \Gamma$, respectively, where $ \Gamma$ is the circumcircle of $ ABC$. Prove that $ \mathcal{T}_{A}^{b}$, $ \mathcal{T}_{A}^{c}$ are congruent if and only if $ AA^{\prime}$ passes through the Nagel point of triangle $ ABC$. ([i]If $ M,N,P$ are the points of tangency of the excircles of the triangle $ ABC$ with the sides of the triangle $ BC$, $ CA$ and $ AB$ respectively, then the Nagel point of the triangle is the intersection point of the lines $ AM$, $ BN$ and $ CP$[/i].)

2016 Sharygin Geometry Olympiad, 4

The Devil and the Man play a game. Initially, the Man pays some cash $s$ to the Devil. Then he lists some $97$ triples $\{i,j,k\}$ consisting of positive integers not exceeding $100$. After that, the Devil draws some convex polygon $A_1A_2...A_{100}$ with area $100$ and pays to the Man, the sum of areas of all triangles $A_iA_jA_k$. Determine the maximal value of $s$ which guarantees that the Man receives at least as much cash as he paid. [i]Proposed by Nikolai Beluhov, Bulgaria[/i]

1993 Bulgaria National Olympiad, 3

it is given a polyhedral constructed from two regular pyramids with bases heptagons (a polygon with $7$ vertices) with common base $A_1A_2A_3A_4A_5A_6A_7$ and vertices respectively the points $B$ and $C$. The edges $BA_i , CA_i$ $(i = 1,...,7$), diagonals of the common base are painted in blue or red. Prove that there exists three vertices of the polyhedral given which forms a triangle with all sizes in the same color.

1949-56 Chisinau City MO, 59

Show that triangle $ABC$ is right-angled if its angles satisfy the ratio $\cos^2A + \cos ^2B +\ cos ^2C=1$.

1955 AMC 12/AHSME, 9

Tags: geometry
A circle is inscribed in a triangle with sides $ 8$, $ 15$, and $ 17$. The radius of the circle is: $ \textbf{(A)}\ 6 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 7$

2012 Postal Coaching, 4

Choose arbitrarily $n$ vertices of a regular $2n-$gon and colour them red. The remaining vertices are coloured blue. We arrange all red-red distances into a nondecreasing sequence and do the same with the blue-blue distances. Prove that the two sequences thus obtained are identical.

2024 JHMT HS, 12

Tags: geometry
Let $N_{11}$ be the answer to problem 11. Concave heptagon $HOPKINS$, where $180^\circ<\angle HOP<270^\circ$, has area $N_{11}$, and $HP=NI\sqrt{24}$. Suppose that $HONS$ and $OPKI$ are congruent squares. Compute the common area of each of these squares.

2025 China Team Selection Test, 9

Let $S$ be a set of $n$ points in the plane such that for any two points $(a, b), (c, d) \in S$, we have that $| a - c | \cdot | b - d | \ge 1$. Show that [list] [*] (a) If $S = \{ Q_1, Q_2, Q_3\}$ such that for any point $Q_i$ in $S$, this point doesn't lie in the axis-aligned rectangle with corners as the other two points, show that the area of $\triangle Q_1Q_2Q_3$ is at least $\frac{\sqrt{5}}{2}$. [*] (b) If all points in $S$ lie in an axis-aligned square with sidelength $a$, then $|S| \le \frac{a^2}{\sqrt{5}} + 2a + 1$. [/list]

2008 Sharygin Geometry Olympiad, 20

(A.Zaslavsky, 10--11) a) Some polygon has the following property: if a line passes through two points which bisect its perimeter then this line bisects the area of the polygon. Is it true that the polygon is central symmetric? b) Is it true that any figure with the property from part a) is central symmetric?

2019 Flanders Math Olympiad, 1

Two touching balls with radii $a$ and $b$ are enclosed in a cylindrical tin of diameter $d$ . Both balls hit the top surface and the shell of the cylinder. The largest ball also hits the bottom surface. Show that $\sqrt{d} =\sqrt{a} +\sqrt{b}$ [img]https://1.bp.blogspot.com/-O4B3P3bghFs/Xy1fDv9zGkI/AAAAAAAAMSQ/ePLVnsXsRi0mz3SWBpIzfGdsizWoLmGVACLcBGAsYHQ/s0/flanders%2B2019%2Bp1.png[/img]

1998 China National Olympiad, 2

Let $D$ be a point inside acute triangle $ABC$ satisfying the condition \[DA\cdot DB\cdot AB+DB\cdot DC\cdot BC+DC\cdot DA\cdot CA=AB\cdot BC\cdot CA.\] Determine (with proof) the geometric position of point $D$.

1957 AMC 12/AHSME, 38

From a two-digit number $ N$ we subtract the number with the digits reversed and find that the result is a positive perfect cube. Then: $ \textbf{(A)}\ {N}\text{ cannot end in 5}\qquad\\ \textbf{(B)}\ {N}\text{ can end in any digit other than 5}\qquad \\ \textbf{(C)}\ {N}\text{ does not exist}\qquad \\ \textbf{(D)}\ \text{there are exactly 7 values for }{N}\qquad \\ \textbf{(E)}\ \text{there are exactly 10 values for }{N}$

2014 Mexico National Olympiad, 4

Problem 4 Let $ABCD$ be a rectangle with diagonals $AC$ and $BD$. Let $E$ be the intersection of the bisector of $\angle CAD$ with segment $CD$, $F$ on $CD$ such that $E$ is midpoint of $DF$, and $G$ on $BC$ such that $BG = AC$ (with $C$ between $B$ and $G$). Prove that the circumference through $D$, $F$ and $G$ is tangent to $BG$.

2025 CMIMC Geometry, 9

Tags: geometry
Define the [i]ratio[/i] of an ellipse to be the length of the major axis divided by the length of its minor axis. Given a trapezoid $ABCD$ with $AB \parallel DC$ and that $\angle{ADC}$ is a right angle, with $AB=18, AD=33, CD=130,$ find the smallest ratio of any ellipse that goes through all vertices of $ABCD.$

EMCC Team Rounds, 2019

[b]p1.[/b] Three positive integers sum to $16$. What is the least possible value of the sum of their squares? [b]p2.[/b] Ben is thinking of an odd positive integer less than $1000$. Ben subtracts $ 1$ from his number and divides by $2$, resulting in another number. If his number is still odd, Ben repeats this procedure until he gets an even number. Given that the number he ends on is $2$, how many possible values are there for Ben’s original number? [b]p3.[/b] Triangle $ABC$ is isosceles, with $AB = BC = 18$ and has circumcircle $\omega$. Tangents to $\omega$ at $ A$ and $ B$ intersect at point $D$. If $AD = 27$, what is the length of $AC$? [b]p4.[/b] How many non-decreasing sequences of five natural numbers have first term $ 1$, last term $ 11$, and have no three terms equal? [b]p5.[/b] Adam is bored, and has written the string “EMCC” on a piece of paper. For fun, he decides to erase every letter “C”, and replace it with another instance of “EMCC”. For example, after one step, he will have the string “EMEMCCEMCC”. How long will his string be after $8$ of these steps? [b]p6.[/b] Eric has two coins, which land heads $40\%$ and $60\%$ of the time respectively. He chooses a coin randomly and flips it four times. Given that the first three flips contained two heads and one tail, what is the probability that the last flip was heads? [b]p7.[/b] In a five person rock-paper-scissors tournament, each player plays against every other player exactly once, with each game continuing until one player wins. After each game, the winner gets $ 1$ point, while the loser gets no points. Given that each player has a $50\%$ chance of defeating any other player, what is the probability that no two players end up with the same amount of points? [b]p8.[/b] Let $\vartriangle ABC$ have $\angle A = \angle B = 75^o$. Points $D, E$, and $F$ are on sides $BC$, $CA$, and $AB$, respectively, so that $EF$ is parallel to $BC$, $EF \perp DE$, and $DE = EF$. Find the ratio of $\vartriangle DEF$’s area to $\vartriangle ABC$’s area. [b]p9.[/b] Suppose $a, b, c$ are positive integers such that $a+b =\sqrt{c^2 + 336}$ and $a-b =\sqrt{c^2 - 336}$. Find $a+b+c$. [b]p10.[/b] How many times on a $12$-hour analog clock are there, such that when the minute and hour hands are swapped, the result is still a valid time? (Note that the minute and hour hands move continuously, and don’t always necessarily point to exact minute/hour marks.) [b]p11.[/b] Adam owns a square $S$ with side length $42$. First, he places rectangle $A$, which is $6$ times as long as it is wide, inside the square, so that all four vertices of $A$ lie on sides of $S$, but none of the sides of $ A$ are parallel to any side of $S$. He then places another rectangle $B$, which is $ 7$ times as long as it is wide, inside rectangle $A$, so that all four vertices of $ B$ lie on sides of $ A$, and again none of the sides of $B$ are parallel to any side of $A$. Find the length of the shortest side of rectangle $ B$. [b]p12.[/b] Find the value of $\sqrt{3 \sqrt{3^3 \sqrt{3^5 \sqrt{...}}}}$, where the exponents are the odd natural numbers, in increasing order. [b]p13.[/b] Jamesu and Fhomas challenge each other to a game of Square Dance, played on a $9 \times 9$ square grid. On Jamesu’s turn, he colors in a $2\times 2$ square of uncolored cells pink. On Fhomas’s turn, he colors in a $1 \times 1$ square of uncolored cells purple. Once Jamesu can no longer make a move, Fhomas gets to color in the rest of the cells purple. If Jamesu goes first, what the maximum number of cells that Fhomas can color purple, assuming both players play optimally in trying to maximize the number of squares of their color? [b]p14.[/b] Triangle $ABC$ is inscribed in circle $\omega$. The tangents to $\omega$ from $B$ and $C$ meet at $D$, and segments $AD$ and $BC$ intersect at $E$. If $\angle BAC = 60^o$ and the area of $\vartriangle BDE$ is twice the area of $\vartriangle CDE$, what is $\frac{AB}{AC}$ ? [b]p15.[/b] Fhomas and Jamesu are now having a number duel. First, Fhomas chooses a natural number $n$. Then, starting with Jamesu, each of them take turns making the following moves: if $n$ is composite, the player can pick any prime divisor $p$ of $n$, and replace $n$ by $n - p$, if $n$ is prime, the player can replace n by $n - 1$. The player who is faced with $ 1$, and hence unable to make a move, loses. How many different numbers $2 \le n \le 2019$ can Fhomas choose such that he has a winning strategy, assuming Jamesu plays optimally? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].