Found problems: 25757
1990 IMO Longlists, 2
The side-lengths of two equilaterals $ABC$ and $KLM$ are $1$ and $1/4$, respectively. And triangle $KLM$ located inside triangle $ABC$. Denote by $\Sigma$ the sum of the distances from $A$ to lines $KL, LM$ and $MK$. Find the location of triangle $KLM$ when $\Sigma$ is maximal.
2023 Kazakhstan National Olympiad, 6
The altitudes of an acute triangle $ABC$ intersect at $H$. The tangent line at $H$ to the circumcircle of triangle $BHC$ intersects the lines $AB$ and $AC$ at points $Q$ and $P$ respectively. The circumcircles of triangles $ABC$ and $APQ$ intersect at point $K$ ($K\neq A$). The tangent lines at the points $A$ and $K$ to the circumcircle of triangle $APQ$ intersect at $T$. Prove that $TH$ passes through the midpoint of segment $BC$.
2017 Thailand Mathematical Olympiad, 6
In an acute triangle $\vartriangle ABC$, $D$ is the foot of altitude from $A$ to $BC$. Suppose that $AD = CD$, and define $N$ as the intersection of the median $CM$ and the line $AD$. Prove that $\vartriangle ABC$ is isosceles if and only if $CN = 2AM$.
1992 USAMO, 4
Chords $AA^{\prime}$, $BB^{\prime}$, $CC^{\prime}$ of a sphere meet at an interior point $P$ but are not contained in a plane. The sphere through $A$, $B$, $C$, $P$ is tangent to the sphere through $A^{\prime}$, $B^{\prime}$, $C^{\prime}$, $P$. Prove that $\, AA' = BB' = CC'$.
2020 Azerbaijan IMO TST, 1
Let $ABC$ be a triangle. Circle $\Gamma$ passes through $A$, meets segments $AB$ and $AC$ again at points $D$ and $E$ respectively, and intersects segment $BC$ at $F$ and $G$ such that $F$ lies between $B$ and $G$. The tangent to circle $BDF$ at $F$ and the tangent to circle $CEG$ at $G$ meet at point $T$. Suppose that points $A$ and $T$ are distinct. Prove that line $AT$ is parallel to $BC$.
(Nigeria)
1997 Tournament Of Towns, (552) 2
$M$ is the midpoint of the side $BC$ of a triangle $ABC$. Construct a line $\ell$ intersecting the triangle and parallel to $BC$ such that the segment of $\ell$ between the sides $AB$ and $AC$ is the hypotenuse of a right-angled triangle with $M$ being its third vertex.
(Folklore)
2011 Indonesia TST, 2
Let $n$ be a integer and $n \ge 3$, and $T_1T_2...T_n$ is a regular n-gon. Distinct $3$ points $T_i , T_j , T_k$ are chosen randomly. Determine the probability of triangle $T_iT_jT_k$ being an acute triangle.
2022 Saudi Arabia JBMO TST, 3
Let $BB_1$ and $CC_1$ be the altitudes of acute-angled triangle $ABC$, and $A_0$ is the midpoint of $BC$. Lines $A_0B_1$ and $A_0C_1$ meet the line passing through $A$ and parallel to $BC$ at points $P$ and $Q$. Prove that the incenter of triangle $PA_0Q$ lies on the altitude of triangle $ABC$.
2017 Peru MO (ONEM), 4
Let $A, B, C, D$ be points in a line $l$ in this order where $AB = BC$ and $AC = CD$. Let $w$ be a circle that passes in the points $B$ and $D$, a line that passes by $A$ intersects $w$ in the points $P$ and $Q$(the point $Q$ is in the segment $AP$). Let $M$ be the midpoint of $PD$ and $R$ is the symmetric of $Q$ by the line $l$, suppose that the segments $PR$ and $MB$ intersect in the point $N$. Prove that the quadrilateral $PMNC$ is cyclic
1990 Tournament Of Towns, (274) 2
The plane is divided by three infinite sets of parallel lines into equilateral triangles of equal area. Let $M$ be the set of their vertices, and $A$ and $B$ be two vertices of such an equilateral triangle. One may rotate the plane through $120^o$ around any vertex of the set $M$. Is it possible to move the point $A$ to the point $B$ by a number of such rotations
(N Vasiliev, Moscow)
1999 IberoAmerican, 2
Given two circle $M$ and $N$, we say that $M$ bisects $N$ if they intersect in two points and the common chord is a diameter of $N$. Consider two fixed non-concentric circles $C_1$ and $C_2$.
a) Show that there exists infinitely many circles $B$ such that $B$ bisects both $C_1$ and $C_2$.
b) Find the locus of the centres of such circles $B$.
1995 Tuymaada Olympiad, 6
Given a circle of radius $r= 1995$. Show that around it you can describe exactly $16$ primitive Pythagorean triangles. The primitive Pythagorean triangle is a right-angled triangle, the lengths of the sides of which are expressed by coprime integers.
2004 Mid-Michigan MO, 5-6
[b]p1.[/b] On the island of Nevermind some people are liars; they always lie. The remaining habitants of the island are truthlovers; they tell only the truth. Three habitants of the island, $A, B$, and $C$ met this morning.
$A$ said: “All of us are liars”.
$B$ said: “Only one of us is a truthlover”.
Who of them is a liar and who of them is a truthlover?
[b]p2.[/b] Pinocchio has $9$ pieces of paper. He is allowed to take a piece of paper and cut it in $5$ pieces or $7$ pieces which increases the number of his pieces. Then he can take again one of his pieces of paper and cut it in $5$ pieces or $7$ pieces. He can do this again and again as many times as he wishes. Can he get $2004$ pieces of paper?
[b]p3.[/b] In Dragonland there are coins of $1$ cent, $2$ cents, $10$ cents, $20$ cents, and $50$ cents. What is the largest amount of money one can have in coins, yet still not be able to make exactly $1$ dollar?
[b]p4.[/b] Find all solutions $a, b, c, d, e$ if it is known that they represent distinct
digits and satisfy the following:
$\begin{tabular}{ccccc}
& a & b & c & d \\
+ & a & c & a & c \\
\hline
c & d & e & b & c \\
\end{tabular}$
[b]p5.[/b] Two players play the following game. On the lowest left square of an $8\times 8$ chessboard there is a rook. The first player is allowed to move the rook up or to the right by an arbitrary number of squares. The second player is also allowed to move the rook up or to the right by an arbitrary number of squares. Then the first player is allowed to do this again, and so on. The one who moves the rook to the upper right square wins. Who has a winning strategy?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 IFYM, Sozopol, 8
The lengths of the sides of a triangle are integers, whereas the radius of its circumscribed circle is a prime number. Prove that the triangle is right-angled.
2011 Today's Calculation Of Integral, 691
Let $a$ be a constant. In the $xy$ palne, the curve $C_1:y=\frac{\ln x}{x}$ touches $C_2:y=ax^2$.
Find the volume of the solid generated by a rotation of the part enclosed by $C_1,\ C_2$ and the $x$ axis about the $x$ axis.
[i]2011 Yokohama National Universty entrance exam/Engineering[/i]
1971 Poland - Second Round, 3
There are 6 lines in space, of which no 3 are parallel, no 3 pass through the same point, and no 3 are contained in the same plane. Prove that among these 6 lines there are 3 mutually oblique lines.
2000 French Mathematical Olympiad, Exercise 2
Let $A,B,C$ be three distinct points in space, $(A)$ the sphere with center $A$ and radius $r$. Let $E$ be the set of numbers $R>0$ for which there is a sphere $(H)$ with center $H$ and radius $R$ such that $B$ and $C$ are outside the sphere, and the points of the sphere $(A)$ are strictly inside it.
(a) Suppose that $B$ and $C$ are on a line with $A$ and strictly outside $(A)$. Show that $E$ is nonempty and bounded, and determine its supremum in terms of the given data.
(b) Find a necessary and sufficient condition for $E$ to be nonempty and bounded
(c) Given $r$, compute the smallest possible supremum of $E$, if it exists.
Mathley 2014-15, 1
Let $AD, BE, CF$ be segments whose midpoints are on the same line $\ell$. The points $X, Y, Z$ lie on the lines $EF, FD, DE$ respectively such that $AX \parallel BY \parallel CZ \parallel \ell$. Prove that $X, Y, Z$ are collinear.
Tran Quang Hung, High School of Natural Sciences, Hanoi National University
2012 IberoAmerican, 1
Let $ABCD$ be a rectangle. Construct equilateral triangles $BCX$ and $DCY$, in such a way that both of these triangles share some of their interior points with some interior points of the rectangle. Line $AX$ intersects line $CD$ on $P$, and line $AY$ intersects line $BC$ on $Q$. Prove that triangle $APQ$ is equilateral.
2022 MOAA, Speed
[b]p1.[/b] What is the value of the sum $2 + 20 + 202 + 2022$?
[b]p2.[/b] Find the smallest integer greater than $10000$ that is divisible by $12$.
[b]p3.[/b] Valencia chooses a positive integer factor of $6^{10}$ at random. The probability that it is odd can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime integers. Find $m + n$.
[b]p4.[/b] How many three digit positive integers are multiples of $4$ but not $8$?
[b]p5.[/b] At the Jane Street store, Andy accidentally buys $5$ dollars more worth of shirts than he had planned. Originally, including the tip to the cashier, he planned to spend all of the remaining $90$ dollars on his giftcard. To compensate for his gluttony, Andy instead gives the cashier a smaller, $12.5\%$ tip so that he still spends $90$ dollars total. How much percent tip was Andy originally planning on giving?
[b]p6.[/b] Let $A,B,C,D$ be four coplanar points satisfying the conditions $AB = 16$, $AC = BC =10$, and $AD = BD = 17$. What is the minimum possible area of quadrilateral $ADBC$?
[b]p7.[/b] How many ways are there to select a set of three distinct points from the vertices of a regular hexagon so that the triangle they form has its smallest angle(s) equal to $30^o$?
[b]p8.[/b] Jaeyong rolls five fair $6$-sided die. The probability that the sum of some three rolls is exactly $8$ times the sum of the other two rolls can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[b]p9.[/b] Find the least positive integer n for there exists some positive integer $k > 1$ for which $k$ and $k + 2$ both divide $\underbrace{11...1}_{n\,\,\,1's}$.
[b]p10.[/b] For some real constant $k$, line $y = k$ intersects the curve $y = |x^4-1|$ four times: points $A$,$B$,$C$ and $D$, labeled from left to right. If $BC = 2AB = 2CD$, then the value of $k$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[b]p11.[/b] Let a be a positive real number and $P(x) = x^2 -8x+a$ and $Q(x) = x^2 -8x+a+1$ be quadratics with real roots such that the positive difference of the roots of $P(x)$ is exactly one more than the positive difference of the roots of $Q(x)$. The value of a can be written as a common fraction $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
[b]p12.[/b] Let $ABCD$ be a trapezoid satisfying $AB \parallel CD$, $AB = 3$, $CD = 4$, with area $35$. Given $AC$ and $BD$ intersect at $E$, and $M$, $N$, $P$, $Q$ are the midpoints of segments $AE$,$BE$,$CE$,$DE$, respectively, the area of the intersection of quadrilaterals $ABPQ$ and $CDMN$ can be expressed as $\frac{m}{n}$ where $m, n$ are relatively prime positive integers. Find $m + n$.
[b]p13.[/b] There are $8$ distinct points $P_1, P_2, ... , P_8$ on a circle. How many ways are there to choose a set of three distinct chords such that every chord has to touch at least one other chord, and if any two chosen chords touch, they must touch at a shared endpoint?
[b]p14.[/b] For every positive integer $k$, let $f(k) > 1$ be defined as the smallest positive integer for which $f(k)$ and $f(k)^2$ leave the same remainder when divided by $k$. The minimum possible value of $\frac{1}{x}f(x)$ across all positive integers $x \le 1000$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$.
[b]p15.[/b] In triangle $ABC$, let $I$ be the incenter and $O$ be the circumcenter. If $AO$ bisects $\angle IAC$, $AB + AC = 21$, and $BC = 7$, then the length of segment $AI$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2006 Alexandru Myller, 3
The median $ AM $ of $ ABC $ meets the incircle of $ ABC $ at $ K,L. $ The lines thru $ K $ and $ L, $ both parallel to $
BC $ meets the incircle of $ ABC $ at $ XY. $ The intersections of $ AX $ and $ AY $ with $ BC $ are $ P,Q, $ respectively. Prove that $ BP=CQ. $
1986 IMO Longlists, 20
For any angle α with $0 < \alpha < 180^{\circ}$, we call a closed convex planar set an $\alpha$-set if it is bounded by two circular arcs (or an arc and a line segment) whose angle of intersection is $\alpha$. Given a (closed) triangle $T$ , find the greatest $\alpha$ such that any two points in $T$ are contained in an $\alpha$-set $S \subset T .$
2009 Romania Team Selection Test, 1
Let $ABCD$ be a circumscribed quadrilateral such that $AD>\max\{AB,BC,CD\}$, $M$ be the common point of $AB$ and $CD$ and $N$ be the common point of $AC$ and $BD$. Show that \[90^{\circ}<m(\angle AND)<90^{\circ}+\frac{1}{2}m(\angle AMD).\]
Fixed, thank you Luis.
Geometry Mathley 2011-12, 4.1
Five points $K_i, i = 1, 2, 3, 4$ and $P$ are chosen arbitrarily on the same circle. Denote by $P(i, j)$ the distance from $P$ to the line passing through $K_i$ and $K_j$ . Prove that $$P(1, 2)P(3, 4) = P(1, 4)P(2, 3) = P(1, 3)P(2, 4)$$
Bùi Quang Tuấn
1988 Romania Team Selection Test, 2
Let $OABC$ be a trihedral angle such that \[ \angle BOC = \alpha, \quad \angle COA = \beta, \quad \angle AOB = \gamma , \quad \alpha + \beta + \gamma = \pi . \] For any interior point $P$ of the trihedral angle let $P_1$, $P_2$ and $P_3$ be the projections of $P$ on the three faces. Prove that $OP \geq PP_1+PP_2+PP_3$.
[i]Constantin Cocea[/i]