Found problems: 25757
2008 Bulgarian Autumn Math Competition, Problem 10.2
Let $\triangle ABC$ have $M$ as the midpoint of $BC$ and let $P$ and $Q$ be the feet of the altitudes from $M$ to $AB$ and $AC$ respectively. Find $\angle BAC$ if $[MPQ]=\frac{1}{4}[ABC]$ and $P$ and $Q$ lie on the segments $AB$ and $AC$.
2005 Brazil National Olympiad, 5
Let $ABC$ be a triangle with all angles $\leq 120^{\circ}$. Let $F$ be the Fermat point of triangle $ABC$, that is, the interior point of $ABC$ such that $\angle AFB = \angle BFC = \angle CFA = 120^\circ$. For each one of the three triangles $BFC$, $CFA$ and $AFB$, draw its Euler line - that is, the line connecting its circumcenter and its centroid.
Prove that these three Euler lines pass through one common point.
[i]Remark.[/i] The Fermat point $F$ is also known as the [b]first Fermat point[/b] or the [b]first Toricelli point[/b] of triangle $ABC$.
[i]Floor van Lamoen[/i]
1979 IMO Longlists, 51
Let $ABC$ be an arbitrary triangle and let $S_1, S_2,\cdots, S_7$ be circles satisfying the following conditions:
$S_1$ is tangent to $CA$ and $AB$,
$S_2$ is tangent to $S_1, AB$, and $BC,$
$S_3$ is tangent to $S_2, BC$, and $CA,$
..............................
$S_7$ is tangent to $S_6, CA$ and $AB.$
Prove that the circles $S_1$ and $S_7$ coincide.
2020 Brazil National Olympiad, 4
Let $ABC$ be a triangle. The ex-circles touch sides $BC, CA$ and $AB$ at points $U, V$ and $W$, respectively. Be $r_u$ a straight line that passes through $U$ and is perpendicular to $BC$, $r_v$ the straight line that passes through $V$ and is perpendicular to $AC$ and $r_w$ the straight line that passes through W and is perpendicular to $AB$. Prove that the lines $r_u$, $r_v$ and $r_w$ pass through the same point.
KoMaL A Problems 2022/2023, A.837
Let all the edges of tetrahedron \(A_1A_2A_3A_4\) be tangent to sphere \(S\). Let \(\displaystyle a_i\) denote the length of the tangent from \(A_i\) to \(S\). Prove that
\[\bigg(\sum_{i=1}^4 \frac 1{a_i}\bigg)^{\!\!2}> 2\bigg(\sum_{i=1}^4 \frac1{a_i^2}\bigg). \]
[i]Submitted by Viktor Vígh, Szeged[/i]
1995 Grosman Memorial Mathematical Olympiad, 4
Two given circles $\alpha$ and $\beta$ intersect each other at two points.
Find the locus of the centers of all circles that are orthogonal to both $\alpha$ and $\beta$.
2017 Princeton University Math Competition, A4/B6
An equilateral triangle $ABC$ has side length $7$. Point $P$ is in the interior of triangle $ABC$, such that $PB=3$ and $PC=5$. The distance between the circumcenters of $ABC$ and $PBC$ can be expressed as $\frac{m\sqrt{n}}{p}$, where $n$ is not divisible by the square of any prime and $m$ and $p$ are relatively prime positive integers. What is $m+n+p$?
1958 Kurschak Competition, 3
The hexagon $ABCDEF$ is convex and opposite sides are parallel. Show that the triangles $ACE$ and $BDF$ have equal area
2025 AIME, 12
Let $A_1A_2\dots A_{11}$ be a non-convex $11$-gon such that
- The area of $A_iA_1A_{i+1}$ is $1$ for each $2 \le i \le 10$,
- $\cos(\angle A_iA_1A_{i+1})=\frac{12}{13}$ for each $2 \le i \le 10$,
- The perimeter of $A_1A_2\dots A_{11}$ is $20$.
If $A_1A_2+A_1A_{11}$ can be expressed as $\frac{m\sqrt{n}-p}{q}$ for positive integers $m,n,p,q$ with $n$ squarefree and $\gcd(m,p,q)=1$, find $m+n+p+q$.
2017 Olympic Revenge, 2
Let $\triangle$$ABC$ a triangle with circumcircle $\Gamma$. Suppose there exist points $R$ and $S$ on sides $AB$ and $AC$, respectively, such that $BR=RS=SC$. A tangent line through $A$ to $\Gamma$ meet the line $RS$ at $P$. Let $I$ the incenter of triangle $\triangle$$ARS$. Prove that $PA=PI$
2014 Sharygin Geometry Olympiad, 5
In triangle $ABC$ $\angle B = 60^o, O$ is the circumcenter, and $L$ is the foot of an angle bisector of angle $B$. The circumcirle of triangle $BOL$ meets the circumcircle of $ABC$ at point $D \ne B$. Prove that $BD \perp AC$.
(D. Shvetsov)
2017 Iranian Geometry Olympiad, 2
Find the angles of triangle $ABC$.
[asy]
import graph; size(9.115122858763474cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.9216637359954705, xmax = 10.308581981531479, ymin = -6.062398124651168, ymax = 9.377503860601273; /* image dimensions */
/* draw figures */
draw((1.1862495478417192,2.0592342833377844)--(3.0842,-3.6348), linewidth(1.6));
draw((2.412546402365528,-0.6953452852662508)--(1.8579031454761883,-0.8802204313959623), linewidth(1.6));
draw((-3.696094000229639,5.5502174997511595)--(1.1862495478417192,2.0592342833377844), linewidth(1.6));
draw((-1.0848977580797177,4.042515022414228)--(-1.4249466943082025,3.5669367606747184), linewidth(1.6));
draw((1.1862495478417192,2.0592342833377844)--(9.086047353374928,-3.589295214974483), linewidth(1.6));
draw((9.086047353374928,-3.589295214974483)--(3.0842,-3.6348), linewidth(1.6));
draw((6.087339936804166,-3.904360930324946)--(6.082907416570757,-3.319734284649538), linewidth(1.6));
draw((3.0842,-3.6348)--(-2.9176473533749285,-3.6803047850255166), linewidth(1.6));
draw((0.08549258342923806,-3.9498657153504615)--(0.08106006319583221,-3.3652390696750536), linewidth(1.6));
draw((-2.9176473533749285,-3.6803047850255166)--(-6.62699301304923,-3.7084282888220432), linewidth(1.6));
draw((-6.62699301304923,-3.7084282888220432)--(-4.815597805533209,2.0137294983122676), linewidth(1.6));
draw((-5.999986761815922,-0.759127399441624)--(-5.442604056766517,-0.9355713910681529), linewidth(1.6));
draw((-4.815597805533209,2.0137294983122676)--(-3.696094000229639,5.5502174997511595), linewidth(1.6));
draw((-4.815597805533209,2.0137294983122676)--(1.1862495478417192,2.0592342833377844), linewidth(1.6));
draw((-1.8168903889624484,2.3287952136627297)--(-1.8124578687290425,1.744168567987322), linewidth(1.6));
draw((-4.815597805533209,2.0137294983122676)--(-2.9176473533749285,-3.6803047850255166), linewidth(1.6));
draw((-3.5893009510093994,-0.7408500702917692)--(-4.1439442078987385,-0.9257252164214806), linewidth(1.6));
label("$A$",(-4.440377746205339,7.118654172569505),SE*labelscalefactor,fontsize(14));
label("$B$",(-7.868514331571194,-3.218904987952353),SE*labelscalefactor,fontsize(14));
label("$C$",(9.165869786409527,-3.0594567746795223),SE*labelscalefactor,fontsize(14));
/* dots and labels */
dot((3.0842,-3.6348),linewidth(3.pt) + dotstyle);
dot((9.086047353374928,-3.589295214974483),linewidth(3.pt) + dotstyle);
dot((1.1862495478417192,2.0592342833377844),linewidth(3.pt) + dotstyle);
dot((-2.9176473533749285,-3.6803047850255166),linewidth(3.pt) + dotstyle);
dot((-4.815597805533209,2.0137294983122676),linewidth(3.pt) + dotstyle);
dot((-6.62699301304923,-3.7084282888220432),linewidth(3.pt) + dotstyle);
dot((-3.696094000229639,5.5502174997511595),linewidth(3.pt) + dotstyle);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]
[i]Proposed by Morteza Saghafian[/i]
2022 HMNT, 6
A triangle $XY Z$ and a circle $\omega$ of radius $2$ are given in a plane, such that $\omega$ intersects segment $\overline{XY}$ at the points $A$, $B$, segment $\overline{Y Z}$ at the points $C$, $D$, and segment $\overline{ZX}$ at the points $E$, $F$. Suppose that $XB > XA$, $Y D > Y C$, and $ZF > ZE$. In addition, $XA = 1$, $Y C = 2$, $ZE = 3$, and $AB = CD = EF$. Compute $AB$.
1986 Flanders Math Olympiad, 1
A circle with radius $R$ is divided into twelve equal parts. The twelve dividing points are connected with the centre of the circle, producing twelve rays. Starting from one of the dividing points a segment is drawn perpendicular to the next ray in the clockwise sense; from the foot of this perpendicular another perpendicular segment is drawn to the next ray, and the process is continued [i]ad infinitum[/i]. What is the limit of the sum of these segments (in terms of $R$)?
[img]https://cdn.artofproblemsolving.com/attachments/2/6/83705b54ecc817b7d913468cd8467d7b8d9f8f.png[/img]
2020 Thailand TSTST, 1
Let $ABC$ be a triangle. Circle $\Gamma$ passes through point $A$, meets segments $AB$ and $AC$ again at $D$ and $E$ respectively, and intersects segment $BC$ at $F$ and $G$ such that $F$ lies between $B$ and $G$. The tangent to circle $(BDF)$ at $F$ and the tangent to circle $(CEG)$ at $G$ meet at $T$. Suppose that points $A$ and $T$ are distinct. Prove that line $AT$ is parallel to $BC$.
2024 Chile Classification NMO Juniors, 4
Given a square \(ABCD\) with a side length of 4 cm and a point \(E\) on side \(BC\), a square \(AEFG\) is constructed with side \(AE\), as shown in the figure. It is known that triangle \(DFG\) has an area of 1 cm\(^2\). Determine the area of square \(AEFG\).
2019 CMIMC, 8
Consider the following three lines in the Cartesian plane: $$\begin{cases}
\ell_1: & 2x - y = 7\\
\ell_2: & 5x + y = 42\\
\ell_3: & x + y = 14
\end{cases}$$
and let $f_i(P)$ correspond to the reflection of the point $P$ across $\ell_i$. Suppose $X$ and $Y$ are points on the $x$ and $y$ axes, respectively, such that $f_1(f_2(f_3(X)))= Y$. Let $t$ be the length of segment $XY$; what is the sum of all possible values of $t^2$?
2019 Tournament Of Towns, 6
Given is a isosceles triangle ABC so that AB=BC. Point K is in ABC, so that CK=AB=BC and <KAC=30°.Find <AKB=?
1999 Iran MO (2nd round), 2
$ABC$ is a triangle with $\angle{B}>45^{\circ}$ , $\angle{C}>45^{\circ}$. We draw the isosceles triangles $CAM,BAN$ on the sides $AC,AB$ and outside the triangle, respectively, such that $\angle{CAM}=\angle{BAN}=90^{\circ}$. And we draw isosceles triangle $BPC$ on the side $BC$ and inside the triangle such that $\angle{BPC}=90^{\circ}$. Prove that $\Delta{MPN}$ is an isosceles triangle, too, and $\angle{MPN}=90^{\circ}$.
2024 USA TSTST, 4
Let $ABCD$ be a quadrilateral inscribed in a circle with center $O$ and $E$ be the intersection of segments $AC$ and $BD$. Let $\omega_1$ be the circumcircle of $ADE$ and $\omega_2$ be the circumcircle of $BCE$. The tangent to $\omega_1$ at $A$ and the tangent to $\omega_2$ at $C$ meet at $P$. The tangent to $\omega_1$ at $D$ and the tangent to $\omega_2$ at $B$ meet at $Q$. Show that $OP=OQ$.
[i]Merlijn Staps[/i]
2023 Sharygin Geometry Olympiad, 10.4
Let $ABC$ be a Poncelet triangle, $A_1$ is the reflection of $A$ about the incenter $I$, $A_2$ is isogonally conjugated to $A_1$ with respect to $ABC$. Find the locus of points $A_2$.
2018 China Girls Math Olympiad, 2
Points $D,E$ lie on segments $AB,AC$ of $\triangle ABC$ such that $DE\parallel BC$. Let $O_1,O_2$ be the circumcenters of $\triangle ABE, \triangle ACD$ respectively. Line $O_1O _2$ meets $AC$ at $P$, and $AB$ at $Q$. Let $O$ be the circumcenter of $\triangle APQ$, and $M$ be the intersection of $AO$ extended and $BC$. Prove that $M$ is the midpoint of $BC$.
2012 Math Prize For Girls Problems, 5
The figure below shows a semicircle inscribed in a right triangle.
[asy]
draw((0, 0) -- (15, 0) -- (0, 8) -- cycle);
real r = 120 / 23;
real theta = -aTan(8/15);
draw(arc((r, r), r, theta + 180, theta + 360));
[/asy]
The triangle has legs of length 8 and 15. The semicircle is tangent to the two legs, and its diameter is on the hypotenuse. What is the radius of the semicircle?
2010 AMC 10, 20
Two circles lie outside regular hexagon $ ABCDEF$. The first is tangent to $ \overline{AB}$, and the second is tangent to $ \overline{DE}$. Both are tangent to lines $ BC$ and $ FA$. What is the ratio of the area of the second circle to that of the first circle?
$ \textbf{(A)}\ 18\qquad\textbf{(B)}\ 27\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 81\qquad\textbf{(E)}\ 108$
1970 IMO Longlists, 56
A square hole of depth $h$ whose base is of length $a$ is given. A dog is tied to the center of the square at the bottom of the hole by a rope of length $L >\sqrt{2a^2+h^2}$, and walks on the ground around the hole. The edges of the hole are smooth, so that the rope can freely slide along it. Find the shape and area of the territory accessible to the dog (whose size is neglected).