Found problems: 25757
2023 Kyiv City MO Round 1, Problem 3
Let $I$ be the incenter of triangle $ABC$ with $AB < AC$. Point $X$ is chosen on the external bisector of $\angle ABC$ such that $IC = IX$. Let the tangent to the circumscribed circle of $\triangle BXC$ at point $X$ intersect the line $AB$ at point $Y$. Prove that $AC = AY$.
[i]Proposed by Oleksiy Masalitin[/i]
2016 Baltic Way, 17
Let $ABCD$ be a convex quadrilateral with $AB = AD.$ Let $T$ be a point on the diagonal $AC$ such that $\angle ABT + \angle ADT = \angle BCD.$ Prove that $AT + AC \geq AB + AD.$
2000 Abels Math Contest (Norwegian MO), 3
a) Each point, on the perimeter of a square, is colored either red, or blue. Show that, there is a right-angled triangle where all the corners are on the square of the square and so that all the corners are on points of the same color.
b) Show that, it is possible to color each point on the perimeter of one square, red, white, or blue so that, there is not a right-angled triangle where all the three corners are at points of same color.
Kyiv City MO Seniors 2003+ geometry, 2010.10.3
A point $O$ is chosen inside the square $ABCD$. The square $A'B'C'D'$ is the image of the square $ABCD$ under the homothety with center at point $O$ and coefficient $k> 1$ (points $A', B', C', D' $ are images of points $A, B, C, D$ respectively). Prove that the sum of the areas of the quadrilaterals $A'ABB'$ and $C'CDD'$ is equal to the sum of the areas quadrilaterals $B'BCC'$ and $D'DAA'$.
EMCC Guts Rounds, 2015
[u]Round 5[/u]
[i]Each of the three problems in this round depends on the answer to two of the other problems. There is only one set of correct answers to these problems; however, each problem will be scored independently, regardless of whether the answers to the other problems are correct.
[/i]
[b]p13.[/b] Let $B$ be the answer to problem $14$, and let $C$ be the answer to problem $15$. A quadratic function $f(x)$ has two real roots that sum to $2^{10} + 4$. After translating the graph of $f(x)$ left by $B$ units and down by $C$ units, the new quadratic function also has two real roots. Find the sum of the two real roots of the new quadratic function.
[b]p14.[/b] Let $A$ be the answer to problem $13$, and let $C$ be the answer to problem $15$. In the interior of angle $\angle NOM = 45^o$, there is a point $P$ such that $\angle MOP = A^o$ and $OP = C$. Let $X$ and $Y$ be the reflections of $P$ over $MO$ and $NO$, respectively. Find $(XY)^2$.
[b]p15.[/b] Let $A$ be the answer to problem $13$, and let $B$ be the answer to problem $14$. Totoro hides a guava at point $X$ in a flat field and a mango at point $Y$ different from $X$ such that the length $XY$ is $B$. He wants to hide a papaya at point $Z$ such that $Y Z$ has length $A$ and the distance $ZX$ is a nonnegative integer. In how many different locations can he hide the papaya?
[u]Round 6[/u]
[b]p16.[/b] Let $ABCD$ be a trapezoid such that $AB$ is parallel to $CD$, $AB = 4$, $CD = 8$, $BC = 5$, and $AD = 6$. Given that point $E$ is on segment $CD$ and that $AE$ is parallel to $BC$, find the ratio between the area of trapezoid $ABCD$ and the area of triangle $ABE$.
[b]p17.[/b] Find the maximum possible value of the greatest common divisor of $\overline{MOO}$ and $\overline{MOOSE}$, given that $S$, $O$, $M$, and $E$ are some nonzero digits. (The digits $S$, $O$, $M$, and $E$ are not necessarily pairwise distinct.)
[b]p18.[/b] Suppose that $125$ politicians sit around a conference table. Each politician either always tells the truth or always lies. (Statements of a liar are never completely true, but can be partially true.) Each politician now claims that the two people beside them are both liars. Suppose that the greatest possible number of liars is $M$ and that the least possible number of liars is $N$. Determine the ordered pair $(M,N)$.
[u]Round 7[/u]
[b]p19.[/b] Define a [i]lucky [/i] number as a number that only contains $4$s and $7$s in its decimal representation. Find the sum of all three-digit lucky numbers.
[b]p20.[/b] Let line segment $AB$ have length $25$ and let points $C$ and $D$ lie on the same side of line $AB$ such that $AC = 15$, $AD = 24$, $BC = 20$, and $BD = 7$. Given that rays $AC$ and $BD$ intersect at point $E$, compute $EA + EB$.
[b]p21.[/b] A $3\times 3$ grid is filled with positive integers and has the property that each integer divides both the integer directly above it and directly to the right of it. Given that the number in the top-right corner is $30$, how many distinct grids are possible?
[u]Round 8[/u]
[b]p22.[/b] Define a sequence of positive integers $s_1, s_2, ... , s_{10}$ to be [i]terrible [/i] if the following conditions are satisfied for any pair of positive integers $i$ and $j$ satisfying $1 \le i < j \le 10$:
$\bullet$ $s_i > s_j $
$\bullet$ $j - i + 1$ divides the quantity $s_i + s_{i+1} + ... + s_j$
Determine the minimum possible value of $s_1 + s_2 + ...+ s_{10}$ over all terrible sequences.
[b]p23.[/b] The four points $(x, y)$ that satisfy $x = y^2 - 37$ and $y = x^2 - 37$ form a convex quadrilateral in the coordinate plane. Given that the diagonals of this quadrilateral intersect at point $P$, find the coordinates of $P$ as an ordered pair.
[b]p24.[/b] Consider a non-empty set of segments of length $1$ in the plane which do not intersect except at their endpoints. (In other words, if point $P$ lies on distinct segments $a$ and $b$, then $P$ is an endpoint of both $a$ and $b$.) This set is called $3$-[i]amazing [/i] if each endpoint of a segment is the endpoint of exactly three segments in the set. Find the smallest possible size of a $3$-amazing set of segments.
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2934024p26255963]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2008 Pan African, 2
Let $C_1$ be a circle with centre $O$, and let $AB$ be a chord of the circle that is not a diameter. $M$ is the midpoint of $AB$. Consider a point $T$ on the circle $C_2$ with diameter $OM$. The tangent to $C_2$ at the point $T$ intersects $C_1$ at two points. Let $P$ be one of these points. Show that $PA^2+PB^2=4PT^2$.
1906 Eotvos Mathematical Competition, 2
Let $K, L,M,N$ designate the centers of the squares erected on the four sides (outside) of a rhombus. Prove that the polygon $KLMN$ is a square.
LMT Speed Rounds, 2018 S
[b]p1.[/b] Evaluate $6^4 +5^4 +3^4 +2^4$.
[b]p2.[/b] What digit is most frequent between $1$ and $1000$ inclusive?
[b]p3.[/b] Let $n = gcd \, (2^2 \cdot 3^3 \cdot 4^4,2^4 \cdot 3^3 \cdot 4^2)$. Find the number of positive integer factors of $n$.
[b]p4.[/b] Suppose $p$ and $q$ are prime numbers such that $13p +5q = 91$. Find $p +q$.
[b]p5.[/b] Let $x = (5^3 -5)(4^3 -4)(3^3 -3)(2^3 -2)(1^3 -1)$. Evaluate $2018^x$ .
[b]p6.[/b] Liszt the lister lists all $24$ four-digit integers that contain each of the digits $1,2,3,4$ exactly once in increasing order. What is the sum of the $20$th and $18$th numbers on Liszt’s list?
[b]p7.[/b] Square $ABCD$ has center $O$. Suppose $M$ is the midpoint of $AB$ and $OM +1 =OA$. Find the area of square $ABCD$.
[b]p8.[/b] How many positive $4$-digit integers have at most $3$ distinct digits?
[b]p9.[/b] Find the sumof all distinct integers obtained by placing $+$ and $-$ signs in the following spaces
$$2\_3\_4\_5$$
[b]p10.[/b] In triangle $ABC$, $\angle A = 2\angle B$. Let $I$ be the intersection of the angle bisectors of $B$ and $C$. Given that $AB = 12$, $BC = 14$,and $C A = 9$, find $AI$ .
[b]p11.[/b] You have a $3\times 3\times 3$ cube in front of you. You are given a knife to cut the cube and you are allowed to move the pieces after each cut before cutting it again. What is the minimumnumber of cuts you need tomake in order to cut the cube into $27$ $1\times 1\times 1$ cubes?
p12. How many ways can you choose $3$ distinct numbers fromthe set $\{1,2,3,...,20\}$ to create a geometric sequence?
[b]p13.[/b] Find the sum of all multiples of $12$ that are less than $10^4$ and contain only $0$ and $4$ as digits.
[b]p14.[/b] What is the smallest positive integer that has a different number of digits in each base from $2$ to $5$?
[b]p15.[/b] Given $3$ real numbers $(a,b,c)$ such that $$\frac{a}{b +c}=\frac{b}{3a+3c}=\frac{c}{a+3b},$$ find all possible values of $\frac{a +b}{c}$.
[b]p16.[/b] Let S be the set of lattice points $(x, y, z)$ in $R^3$ satisfying $0 \le x, y, z \le 2$. How many distinct triangles exist with all three vertices in $S$?
[b]p17.[/b] Let $\oplus$ be an operator such that for any $2$ real numbers $a$ and $b$, $a \oplus b = 20ab -4a -4b +1$. Evaluate $$\frac{1}{10} \oplus \frac19 \oplus \frac18 \oplus \frac17 \oplus \frac16 \oplus \frac15 \oplus \frac14 \oplus \frac13 \oplus \frac12 \oplus 1.$$
[b]p18.[/b] A function $f :N \to N$ satisfies $f ( f (x)) = x$ and $f (2f (2x +16)) = f \left(\frac{1}{x+8} \right)$ for all positive integers $x$. Find $f (2018)$.
[b]p19.[/b] There exists an integer divisor $d$ of $240100490001$ such that $490000 < d < 491000$. Find $d$.
[b]p20.[/b] Let $a$ and $b$ be not necessarily distinct positive integers chosen independently and uniformly at random from the set $\{1,2, 3, ... ,511,512\}$. Let $x = \frac{a}{b}$ . Find the probability that $(-1)^x$ is a real number.
[b]p21[/b]. In $\vartriangle ABC$ we have $AB = 4$, $BC = 6$, and $\angle ABC = 135^o$. $\angle ABC$ is trisected by rays $B_1$ and $B_2$. Ray $B_1$ intersects side $C A$ at point $F$, and ray $B_2$ intersects side $C A$ at point $G$. What is the area of $\vartriangle BFG$?
[b]p22.[/b] A level number is a number which can be expressed as $x \cdot \lfloor x \rfloor \cdot \lceil x \rceil$ where $x$ is a real number. Find the number of positive integers less than or equal to $1000$ which are also level numbers.
[b]p23.[/b] Triangle $\vartriangle ABC$ has sidelengths $AB = 13$, $BC = 14$, $C A = 15$ and circumcenter $O$. Let $D$ be the intersection of $AO$ and $BC$. Compute $BD/DC$.
[b]p24.[/b] Let $f (x) = x^4 -3x^3 +2x^2 +5x -4$ be a quartic polynomial with roots $a,b,c,d$. Compute
$$\left(a+1 +\frac{1}{a} \right)\left(b+1 +\frac{1}{b} \right)\left(c+1 +\frac{1}{c} \right)\left(d+1 +\frac{1}{d} \right).$$
[b]p25.[/b] Triangle $\vartriangle ABC$ has centroid $G$ and circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to $BC$. If $AD = 2018$, $BD =20$, and $CD = 18$, find the area of triangle $\vartriangle DOG$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 Chile National Olympiad, 5
A conical surface $C$ is cut by a plane $T$ as shown in the figure on the back of this sheet. Show that $C \cap T$ is an ellipse. You can use as an aid the fact that if you consider the two spheres tangent to $C$ and $T$ as shown in the figure, they intersect $T$ in the bulbs.
[asy]
// calculate intersection of line and plane
// p = point on line
// d = direction of line
// q = point in plane
// n = normal to plane
triple lineintersectplan(triple p, triple d, triple q, triple n)
{
return (p + dot(n,q - p)/dot(n,d)*d);
}
// projection of point A onto line BC
triple projectionofpointontoline(triple A, triple B, triple C)
{
return lineintersectplan(B, B - C, A, B - C);
}
// calculate area of space triangle with vertices A, B, and C
real trianglearea(triple A, triple B, triple C)
{
return abs(cross(A - C, B - C)/2);
}
// calculate incentre of space triangle ABC
triple triangleincentre(triple A, triple B, triple C)
{
return (abs(B - C) * A + abs(C - A) * B + abs(A - B) * C)/(abs(B - C) + abs(C - A) + abs(A - B));
}
// calculate inradius of space triangle ABC
real triangleinradius(triple A, triple B, triple C)
{
return 2*trianglearea(A,B,C)/(abs(B - C) + abs(C - A) + abs(A - B));
}
// calculate excentre of space triangle ABC
triple triangleexcentre(triple A, triple B, triple C)
{
return (-abs(B - C) * A + abs(C - A) * B + abs(A - B) * C)/(-abs(B - C) + abs(C - A) + abs(A - B));
}
// calculate exradius of space triangle ABC
real triangleexradius(triple A, triple B, triple C)
{
return 2*trianglearea(A,B,C)/(-abs(B - C) + abs(C - A) + abs(A - B));
}
unitsize(2 cm);
pair project (triple A, real t) {
return((A.x, A.y*Sin(t) + A.z*Cos(t)));
}
real alpha, beta, theta, t;
real coneradius = 1, coneheight = 3;
real a, b, c;
real[] m, r;
triple A, B, V;
triple ellipsecenter, ellipsex, ellipsey;
triple[] F, O, P, R, W;
path[] ellipse, spherering;
theta = 15;
V = (0,0,-coneheight);
m[1] = sqrt(Cos(theta)^2*coneheight^2 - Sin(theta)^2*coneradius^2)/coneradius;
m[2] = -m[1];
alpha = -aTan(Sin(theta)/m[1]);
beta = -aTan(Sin(theta)/m[2]) + 180;
A = (coneradius*Cos(alpha), coneradius*Sin(alpha), 0);
B = (coneradius*Cos(beta), coneradius*Sin(beta), 0);
W[1] = interp(V,(coneradius,0,0),0.6);
W[2] = interp(V,(-coneradius,0,0),0.4);
O[1] = triangleexcentre(V,W[1],W[2]);
O[2] = triangleincentre(V,W[1],W[2]);
r[1] = triangleexradius(V,W[1],W[2]);
r[2] = triangleinradius(V,W[1],W[2]);
F[1] = projectionofpointontoline(O[1],W[1],W[2]);
F[2] = projectionofpointontoline(O[2],W[1],W[2]);
P[1] = O[1] - (0,0,r[1]*coneradius/sqrt(coneradius^2 + coneheight^2));
P[2] = O[2] - (0,0,r[2]*coneradius/sqrt(coneradius^2 + coneheight^2));
spherering[11] = shift(project(P[1],theta))*yscale(Sin(theta))*arc((0,0),r[1]*coneheight/sqrt(coneradius^2 + coneheight^2),alpha,beta);
spherering[12] = shift(project(P[1],theta))*yscale(Sin(theta))*arc((0,0),r[1]*coneheight/sqrt(coneradius^2 + coneheight^2),beta,alpha + 360);
spherering[21] = shift(project(P[2],theta))*yscale(Sin(theta))*arc((0,0),r[2]*coneheight/sqrt(coneradius^2 + coneheight^2),alpha,beta);
spherering[22] = shift(project(P[2],theta))*yscale(Sin(theta))*arc((0,0),r[2]*coneheight/sqrt(coneradius^2 + coneheight^2),beta,alpha + 360);
ellipsecenter = (W[1] + W[2])/2;
a = abs(W[1] - ellipsecenter);
c = abs(F[1] - ellipsecenter);
b = sqrt(a^2 - c^2);
ellipsex = (W[1] - W[2])/abs(W[1] - W[2]);
ellipsey = (0,1,0);
ellipse[1] = project(ellipsecenter + a*ellipsex, theta);
for (t = 0; t <= 180; t = t + 5) {
ellipse[1] = ellipse[1]--project(ellipsecenter + a*Cos(t)*ellipsex + b*Sin(t)*ellipsey, theta);
}
ellipse[2] = project(ellipsecenter - a*ellipsex, theta);
for (t = 180; t <= 360; t = t + 5) {
ellipse[2] = ellipse[2]--project(ellipsecenter + a*Cos(t)*ellipsex + b*Sin(t)*ellipsey, theta);
}
R[1] = ellipsecenter + 1*ellipsex + ellipsey;
R[2] = ellipsecenter - 1.2*ellipsex + ellipsey;
R[3] = ellipsecenter - 1*ellipsex - ellipsey;
R[4] = ellipsecenter + 1.2*ellipsex - ellipsey;
fill(ellipse[1]--ellipse[2]--cycle, gray(0.9));
draw(yscale(Sin(theta))*Circle((0,0),coneradius));
draw(project(V,theta)--project(A,theta));
draw(project(V,theta)--project(B,theta));
draw(Circle(project(O[1],theta),r[1]));
draw(Circle(project(O[2],theta),r[2]));
draw(spherering[11], dashed);
draw(spherering[12]);
draw(spherering[21], dashed);
draw(spherering[22]);
draw(ellipse[1], dashed);
draw(ellipse[2]);
draw(project(R[1],theta)--interp(project(R[1],theta),project(R[2],theta),0.13));
draw(interp(project(R[1],theta),project(R[2],theta),0.13)--interp(project(R[1],theta),project(R[2],theta),0.76), dashed);
draw(interp(project(R[1],theta),project(R[2],theta),0.76)--project(R[2],theta));
draw(project(R[2],theta)--project(R[3],theta)--project(R[4],theta)--project(R[1],theta));
label("$C$", (-1,0.3));
label("$T$", (1.2,-0.8));
dot(project(F[1],theta));
dot(project(F[2],theta));
//dot("$F_1$", project(F[1],theta));
//dot("$F_2$", project(F[2],theta));
//dot("$O_1$", project(O[1],theta));
//dot("$O_2$", project(O[2],theta));
//dot("$P_1$", project(P[1],theta));
//dot("$V$", project(V,theta));
//dot("$W_1$", project(W[1],theta));
//dot("$W_2$", project(W[2],theta));
[/asy]
2005 Greece JBMO TST, 1
Examine if we can place $9$ convex $6$-angled polygons the one next to the other (with common only one side or part of her) to construct a convex $39$-angled polygon.
1996 Brazil National Olympiad, 2
Does there exist a set of $n > 2, n < \infty$ points in the plane such that no three are collinear and the circumcenter of any three points of the set is also in the set?
2018 International Zhautykov Olympiad, 2
Let $N,K,L$ be points on $AB,BC,CA$ such that $CN$ bisector of angle $\angle ACB$ and $AL=BK$.Let $BL\cap AK=P$.If $I,J$ be incenters of triangles $\triangle BPK$ and $\triangle ALP$ and $IJ\cap CN=Q$ prove that $IQ=JP$
1992 Denmark MO - Mohr Contest, 4
Let $a, b$ and $c$ denote the side lengths and $m_a, m_b$ and $m_c$ of the median's lengths in an arbitrary triangle. Show that $$\frac34 < \frac{m_a + m_b + m_c}{a + b + c}<1$$ Also show that there is no narrower range that for each triangle that contains the fraction
$$\frac{m_a + m_b + m_c}{a + b + c}$$
Ukrainian TYM Qualifying - geometry, 2014.1
In the triangle $ABC$, one of the angles of which is equal to $48^o$, side lengths satisfy $(a-c)(a+c)^2+bc(a+c)=ab^2$. Express in degrees the measures of the other two angles of this triangle.
LMT Team Rounds 2021+, B2
Find the greatest possible distance between any two points inside or along the perimeter of an equilateral triangle with side length $2$.
[i]Proposed by Alex Li[/i]
2012 International Zhautykov Olympiad, 1
An acute triangle $ABC$ is given. Let $D$ be an arbitrary inner point of the side $AB$. Let $M$ and $N$ be the feet of the perpendiculars from $D$ to $BC$ and $AC$, respectively. Let $H_1$ and $H_2$ be the orthocentres of triangles $MNC$ and $MND$, respectively. Prove that the area of the quadrilateral $AH_1BH_2$ does not depend on the position of $D$ on $AB$.
1985 Tournament Of Towns, (088) 4
A square is divided into $5$ rectangles in such a way that its $4$ vertices belong to $4$ of the rectangles , whose areas are equal , and the fifth rectangle has no points in common with the side of the square (see diagram) . Prove that the fifth rectangle is a square.
[img]https://3.bp.blogspot.com/-TQc1v_NODek/XWHHgmONboI/AAAAAAAAKi4/XES55OJS5jY9QpNmoURp4y80EkanNzmMwCK4BGAYYCw/s1600/TOT%2B1985%2BSpring%2BJ4.png[/img]
2005 Germany Team Selection Test, 2
Let $ABC$ be a triangle satisfying $BC < CA$. Let $P$ be an arbitrary point on the side $AB$ (different from $A$ and $B$), and let the line $CP$ meet the circumcircle of triangle $ABC$ at a point $S$ (apart from the point $C$).
Let the circumcircle of triangle $ASP$ meet the line $CA$ at a point $R$ (apart from $A$), and let the circumcircle of triangle $BPS$ meet the line $CB$ at a point $Q$ (apart from $B$).
Prove that the excircle of triangle $APR$ at the side $AP$ is identical with the excircle of triangle $PQB$ at the side $PQ$ if and only if the point $S$ is the midpoint of the arc $AB$ on the circumcircle of triangle $ABC$.
1945 Moscow Mathematical Olympiad, 094
Prove that it is impossible to divide a scalene triangle into two equal triangles.
2020 Benelux, 3
Let $ABC$ be a triangle. The circle $\omega_A$ through $A$ is tangent to line $BC$ at $B$. The circle $\omega_C$ through $C$ is tangent to line $AB$ at $B$. Let $\omega_A$ and $\omega_C$ meet again at $D$. Let $M$ be the midpoint of line segment $[BC]$, and let $E$ be the intersection of lines $MD$ and $AC$. Show that $E$ lies on $\omega_A$.
2011 Sharygin Geometry Olympiad, 4
Point $D$ lies on the side $AB$ of triangle $ABC$. The circle inscribed in angle $ADC$ touches internally the circumcircle of triangle $ACD$. Another circle inscribed in angle $BDC$ touches internally the circumcircle of triangle $BCD$. These two circles touch segment $CD$ in the same point $X$. Prove that the perpendicular from $X$ to $AB$ passes through the incenter of triangle $ABC$
KoMaL A Problems 2023/2024, A. 864
Let $ABC$ be a triangle and $O$ be its circumcenter. Let $D$, $E$ and $F$ be the respective tangent points of the incircle of $\triangle ABC$, and sides $BC$, $CA$ and $AB$. Let $M$ and $N$ be the respective midpoints of sides $AB$ and $AC$. Let $M'$ and $N'$ be the respective reflections of points $M$ and $N$ across lines $DE$ and $DF$. Let lines $CM'$ and $BN'$ intersect lines $DE$ and $DF$ at points $H$ and $J$, respectively.
Prove that the points $H$, $J$ and $O$ are collinear.
[i]Proposed by Luu Dong, Vietnam[/i]
1997 Polish MO Finals, 2
$ABCDE$ is a convex pentagon such that $DC = DE$ and $\angle C = \angle E = 90^{\cdot}$. $F$ is a point on the side $AB$ such that $\frac{AF}{BF}= \frac{AE}{BC}$. Show that $\angle FCE = \angle ADE$ and $\angle FEC = \angle BDC$.
Mid-Michigan MO, Grades 10-12, 2002
[b]p1.[/b] Find all integer solutions of the equation $a^2 - b^2 = 2002$.
[b]p2.[/b] Prove that the disks drawn on the sides of a convex quadrilateral as on diameters cover this quadrilateral.
[b]p3.[/b] $30$ students from one school came to Mathematical Olympiad. In how many different ways is it possible to place them in four rooms?
[b]p4.[/b] A $12$ liter container is filled with gasoline. How to split it in two equal parts using two empty $5$ and $8$ liter containers?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 ELMO Shortlist, 3
We say a finite set $S$ of points in the plane is [i]very[/i] if for every point $X$ in $S$, there exists an inversion with center $X$ mapping every point in $S$ other than $X$ to another point in $S$ (possibly the same point).
(a) Fix an integer $n$. Prove that if $n \ge 2$, then any line segment $\overline{AB}$ contains a unique very set $S$ of size $n$ such that $A, B \in S$.
(b) Find the largest possible size of a very set not contained in any line.
(Here, an [i]inversion[/i] with center $O$ and radius $r$ sends every point $P$ other than $O$ to the point $P'$ along ray $OP$ such that $OP\cdot OP' = r^2$.)
[i]Proposed by Sammy Luo[/i]