This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 239 Open Mathematical Olympiad, 2

Five edges of a tetrahedron are tangent to a sphere. Prove that there are another five edges from this tetrahedron that are also tangent to a $($not necessarily the same$)$ sphere.

2009 JBMO TST - Macedonia, 3

Tags: geometry
Let $ \triangle ABC $ be equilateral. On the side $ AB $ points $ C_{1} $ and $ C_{2} $, on the side $ AC $ points $ B_{1} $ and $ B_{2} $ are chosen, and on the side $ BC $ points $ A_{1} $ and $ A_{2} $ are chosen. The following condition is given : $ A_{1}A_{2} $ = $ B_{1}B_{2} $ = $ C_{1}C_{2} $. Let the intersection lines $ A_{2}B_{1}$ and $ B_{2}C_{1} $, $ B_{2}C_{1} $ and $ C_{2}A_{1} $ and $ C_{2}A_{1} $ and $ A_{2}B_{1} $ are $ E $, $ F $, and $ G $ respectively. Show that the triangle formed by $ B_{1}A_{2} $, $ A_{1}C_{2} $ and $ C_{1}B_{2} $ is similar to $ \triangle EFG $.

2006 Serbia Team Selection Test, 2

Tags: geometry
$$problem 2$$:A point $P$ is taken in the interior of a right triangle$ ABC$ with $\angle C = 90$ such hat $AP = 4, BP = 2$, and$ CP = 1$. Point $Q$ symmetric to $P$ with respect to $AC$ lies on the circumcircle of triangle $ABC$. Find the angles of triangle $ABC$.

2021 Saudi Arabia Training Tests, 21

Let $ABCD$ be a cyclic quadrilateral with $O$ is circumcenter and $AC$ meets $BD$ at $I$ Suppose that rays $DA,CD$ meet at $E$ and rays $BA,CD$ meet at $F$. The Gauss line of $ABCD$ meets $AB,BC,CD,DA$ at points $M,N,P,Q$ respectively. Prove that the circle of diameter $OI$ is tangent to two circles $(ENQ), (FMP)$

2013 Cuba MO, 9

Let ABC be a triangle with $\angle A = 90^o$, $\angle B = 75^o$, and $AB = 2$. Points $P$ and $Q$ of the sides $AC$ and $BC$ respectively, are such that $\angle APB = \angle CPQ$ and $\angle BQA = \angle CQP$. Calculate the lenght of $QA$.

2022 Bundeswettbewerb Mathematik, 4

Some points in the plane are either colored red or blue. The distance between two points of the opposite color is at most 1. Prove that there exists a circle with diameter $\sqrt{2}$ such that no two points outside of this circle have same color. It is enough to prove this claim for a finite number of colored points.

2012 Sharygin Geometry Olympiad, 13

Points $A, B$ are given. Find the locus of points $C$ such that $C$, the midpoints of $AC, BC$ and the centroid of triangle $ABC$ are concyclic.

2018 Portugal MO, 4

Let $[ABC]$ be any triangle and let $D, E$ and $F$ be the symmetrics of the circumcenter wrt the three sides. Prove that the triangles $[ABC]$ and $[DEF]$ are congruent. [img]https://cdn.artofproblemsolving.com/attachments/c/6/45bd929dfff87fb8deb09eddb59ef46e0dc0f4.png[/img]

2014 Sharygin Geometry Olympiad, 24

A circumscribed pyramid $ABCDS$ is given. The opposite sidelines of its base meet at points $P$ and $Q$ in such a way that $A$ and $B$ lie on segments $PD$ and $PC$ respectively. The inscribed sphere touches faces $ABS$ and $BCS$ at points $K$ and $L$. Prove that if $PK$ and $QL$ are complanar then the touching point of the sphere with the base lies on $BD$.

2007 Sharygin Geometry Olympiad, 6

A cube with edge length $2n+ 1$ is dissected into small cubes of size $1\times 1\times 1$ and bars of size $2\times 2\times 1$. Find the least possible number of cubes in such a dissection.

2019 Dutch IMO TST, 1

Let $ABCD$ be a cyclic quadrilateral (In the same order) inscribed into the circle $\odot (O)$. Let $\overline{AC}$ $\cap$ $\overline{BD}$ $=$ $E$. A randome line $\ell$ through $E$ intersects $\overline{AB}$ at $P$ and $BC$ at $Q$. A circle $\omega$ touches $\ell$ at $E$ and passes through $D$. Given, $\omega$ $\cap$ $\odot (O)$ $=$ $R$. Prove, Points $B,Q,R,P$ are concyclic.

2005 Swedish Mathematical Competition, 6

A regular tetrahedron of edge length $1$ is orthogonally projected onto a plane. Find the largest possible area of its image.

1996 Romania Team Selection Test, 1

Tags: function , geometry
Let $ f: \mathbb{R}^2 \rightarrow \mathbb{R} $ be a function such that for every regular $ n $-gon $ A_1A_2 \ldots A_n $ we have $ f(A_1)+f(A_2)+\cdots +f(A_n)=0 $. Prove that $ f(x)=0 $ for all reals $ x $.

2012 Tournament of Towns, 2

Given a convex polyhedron and a sphere intersecting each its edge at two points so that each edge is trisected (divided into three equal parts). Is it necessarily true that all faces of the polyhedron are (a) congruent polygons? (b) regular polygons?

2008 Mongolia Team Selection Test, 3

Given a circumscribed trapezium $ ABCD$ with circumcircle $ \omega$ and 2 parallel sides $ AD,BC$ ($ BC<AD$). Tangent line of circle $ \omega$ at the point $ C$ meets with the line $ AD$ at point $ P$. $ PE$ is another tangent line of circle $ \omega$ and $ E\in\omega$. The line $ BP$ meets circle $ \omega$ at point $ K$. The line passing through the point $ C$ paralel to $ AB$ intersects with $ AE$ and $ AK$ at points $ N$ and $ M$ respectively. Prove that $ M$ is midpoint of segment $ CN$.

2018 Iranian Geometry Olympiad, 4

We have a polyhedron all faces of which are triangle. Let $P$ be an arbitrary point on one of the edges of this polyhedron such that $P$ is not the midpoint or endpoint of this edge. Assume that $P_0 = P$. In each step, connect $P_i$ to the centroid of one of the faces containing it. This line meets the perimeter of this face again at point $P_{i+1}$. Continue this process with $P_{i+1}$ and the other face containing $P_{i+1}$. Prove that by continuing this process, we cannot pass through all the faces. (The centroid of a triangle is the point of intersection of its medians.) Proposed by Mahdi Etesamifard - Morteza Saghafian

2004 Tournament Of Towns, 2

The incircle of the triangle ABC touches the sides BC, AC, and AB at points A', B', and C', respectively. It is known that AA'=BB'=CC'. Does the triangle ABC have to be equilateral? (I am very interested in ingenious solution of this problem, because I found an ugly one using Stewart's theorem and tons of algebra during the contest).

2008 Alexandru Myller, 3

Tags: geometry , area
For a convex pentagon, prove that $ \frac{\text{area} (ABC)}{\text{area} (ABCD)} +\frac{\text{area} (CDE)}{\text{area} (BCDE)} <1. $ [i]Dan Ismailescu[/i]

2023 Bangladesh Mathematical Olympiad, P7

Let $\Delta ABC$ be an acute triangle and $\omega$ be its circumcircle. Perpendicular from $A$ to $BC$ intersects $BC$ at $D$ and $\omega$ at $K$. Circle through $A$, $D$ and tangent to $BC$ at $D$ intersect $\omega$ at $E$. $AE$ intersects $BC$ at $T$. $TK$ intersects $\omega$ at $S$. Assume, $SD$ intersects $\omega$ at $X$. Prove that $X$ is the reflection of $A$ with respect to the perpendicular bisector of $BC$.

2017 European Mathematical Cup, 3

Tags: geometry
Let $ABC$ be an acute triangle. Denote by $H$ and $M$ the orthocenter of $ABC$ and the midpoint of side $BC,$ respectively. Let $Y$ be a point on $AC$ such that $YH$ is perpendicular to $MH$ and let $Q$ be a point on $BH$ such that $QA$ is perpendicular to $AM.$ Let $J$ be the second point of intersection of $MQ$ and the circle with diameter $MY.$ Prove that $HJ$ is perpendicular to $AM.$ (Steve Dinh)

2007 Indonesia TST, 1

Call an $n$-gon to be [i]lattice[/i] if its vertices are lattice points. Prove that inside every lattice convex pentagon there exists a lattice point.

2013 JBMO TST - Macedonia, 4

A regular hexagon with side length $ 1 $ is given. There are $ m $ points in its interior such that no $ 3 $ are collinear. The hexagon is divided into triangles (triangulated), such that every point of the $ m $ given and every vertex of the hexagon is a vertex of such a triangle. The triangles don't have common interior points. Prove that there exists a triangle with area not greater than $ \frac{3 \sqrt{3}}{4(m+2)}$.

2011 Harvard-MIT Mathematics Tournament, 7

Let $ABCD$ be a quadrilateral inscribed in the unit circle such that $\angle BAD$ is $30$ degrees. Let $m$ denote the minimum value of $CP + PQ + CQ$, where $P$ and $Q$ may be any points lying along rays $AB$ and $AD$, respectively. Determine the maximum value of $m$.

2015 British Mathematical Olympiad Round 1, 2

Let $ABCD$ be a cyclic quadrilateral and let the lines $CD$ and $BA$ meet at $E$. The line through $D$ which is tangent to the circle $ADE$ meets the line $CB$ at $F$. Prove that triangle $CDF$ is isosceles.

2000 AIME Problems, 8

A container in the shape of a right circular cone is 12 inches tall and its base has a 5-inch radius. The liquid that is sealed inside is 9 inches deep when the cone is held with its point down and its base horizontal. When the liquid is held with its point up and its base horizontal, the liquid is $m-n\sqrt[3]{p},$ where $m,$ $n,$ and $p$ are positive integers and $p$ is not divisible by the cube of any prime number. Find $m+n+p.$