This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2023 India IMO Training Camp, 3

Tags: geometry
In triangle $ABC$, with orthocenter $H$ and circumcircle $\Gamma$, the bisector of angle $BAC$ meets $\overline{BC}$ at $K$. Point $Q$ lies on $\Gamma$ such that $\overline{AQ} \perp \overline{QK}$. Circumcircle of $\triangle AQH$ meets $\overline{AC}$ at $Y$ and $\overline{AB}$ at $Z$. Let $\overline{BY}$ and $\overline{CZ}$ meet at $T$. Prove that $\overline{TH} \perp \overline{KA}$

Ukraine Correspondence MO - geometry, 2014.7

Let $ABC$ be an isosceles triangle ($AB = AC$). The points $D$ and $E$ were marked on the ray $AC$ so that $AC = 2AD$ and $AE = 2AC$. Prove that $BC$ is the bisector of the angle $\angle DBE$.

2016 Indonesia TST, 6

Tags: geometry
Let $ABC$ be an acute triangle and let $M$ be the midpoint of $AC$. A circle $\omega$ passing through $B$ and $M$ meets the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $T$ be the point such that $BPTQ$ is a parallelogram. Suppose that $T$ lies on the circumcircle of $ABC$. Determine all possible values of $\frac{BT}{BM}$.

2013 ELMO Shortlist, 12

Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$. [i]Proposed by David Stoner[/i]

2019 LMT Fall, Team Round

[b]p1.[/b] What is the smallest possible value for the product of two real numbers that differ by ten? [b]p2.[/b] Determine the number of positive integers $n$ with $1 \le n \le 400$ that satisfy the following: $\bullet$ $n$ is a square number. $\bullet$ $n$ is one more than a multiple of $5$. $\bullet$ $n$ is even. [b]p3.[/b] How many positive integers less than $2019$ are either a perfect cube or a perfect square but not both? [b]p4.[/b] Felicia draws the heart-shaped figure $GOAT$ that is made of two semicircles of equal area and an equilateral triangle, as shown below. If $GO = 2$, what is the area of the figure? [img]https://cdn.artofproblemsolving.com/attachments/3/c/388daa657351100f408ab3f1185f9ab32fcca5.png[/img] [b]p5.[/b] For distinct digits $A, B$, and $ C$: $$\begin{tabular}{cccc} & A & A \\ & B & B \\ + & C & C \\ \hline A & B & C \\ \end{tabular}$$ Compute $A \cdot B \cdot C$. [b]p6 [/b] What is the difference between the largest and smallest value for $lcm(a,b,c)$, where $a,b$, and $c$ are distinct positive integers between $1$ and $10$, inclusive? [b]p7.[/b] Let $A$ and $B$ be points on the circumference of a circle with center $O$ such that $\angle AOB = 100^o$. If $X$ is the midpoint of minor arc $AB$ and $Y$ is on the circumference of the circle such that $XY\perp AO$, find the measure of $\angle OBY$ . [b]p8. [/b]When Ben works at twice his normal rate and Sammy works at his normal rate, they can finish a project together in $6$ hours. When Ben works at his normal rate and Sammy works as three times his normal rate, they can finish the same project together in $4$ hours. How many hours does it take Ben and Sammy to finish that project if they each work together at their normal rates? [b][b]p9.[/b][/b] How many positive integer divisors $n$ of $20000$ are there such that when $20000$ is divided by $n$, the quotient is divisible by a square number greater than $ 1$? [b]p10.[/b] What’s the maximum number of Friday the $13$th’s that can occur in a year? [b]p11.[/b] Let circle $\omega$ pass through points $B$ and $C$ of triangle $ABC$. Suppose $\omega$ intersects segment $AB$ at a point $D \ne B$ and intersects segment $AC$ at a point $E \ne C$. If $AD = DC = 12$, $DB = 3$, and $EC = 8$, determine the length of $EB$. [b]p12.[/b] Let $a,b$ be integers that satisfy the equation $2a^2 - b^2 + ab = 18$. Find the ordered pair $(a,b)$. [b]p13.[/b] Let $a,b,c$ be nonzero complex numbers such that $a -\frac{1}{b}= 8, b -\frac{1}{c}= 10, c -\frac{1}{a}= 12.$ Find $abc -\frac{1}{abc}$ . [b]p14.[/b] Let $\vartriangle ABC$ be an equilateral triangle of side length $1$. Let $\omega_0$ be the incircle of $\vartriangle ABC$, and for $n > 0$, define the infinite progression of circles $\omega_n$ as follows: $\bullet$ $\omega_n$ is tangent to $AB$ and $AC$ and externally tangent to $\omega_{n-1}$. $\bullet$ The area of $\omega_n$ is strictly less than the area of $\omega_{n-1}$. Determine the total area enclosed by all $\omega_i$ for $i \ge 0$. [b]p15.[/b] Determine the remainder when $13^{2020} +11^{2020}$ is divided by $144$. [b]p16.[/b] Let $x$ be a solution to $x +\frac{1}{x}= 1$. Compute $x^{2019} +\frac{1}{x^{2019}}$ . [b]p17. [/b]The positive integers are colored black and white such that if $n$ is one color, then $2n$ is the other color. If all of the odd numbers are colored black, then how many numbers between $100$ and $200$ inclusive are colored white? [b]p18.[/b] What is the expected number of rolls it will take to get all six values of a six-sided die face-up at least once? [b]p19.[/b] Let $\vartriangle ABC$ have side lengths $AB = 19$, $BC = 2019$, and $AC = 2020$. Let $D,E$ be the feet of the angle bisectors drawn from $A$ and $B$, and let $X,Y$ to be the feet of the altitudes from $C$ to $AD$ and $C$ to $BE$, respectively. Determine the length of $XY$ . [b]p20.[/b] Suppose I have $5$ unit cubes of cheese that I want to divide evenly amongst $3$ hungry mice. I can cut the cheese into smaller blocks, but cannot combine blocks into a bigger block. Over all possible choices of cuts in the cheese, what’s the largest possible volume of the smallest block of cheese? PS. You had better use hide for answers.

1991 Arnold's Trivium, 88

How many figures can be obtained by intersecting the infinite-dimensional cube $|x_k| \le 1$, $k = 1,2,\ldots$ with a two-dimensional plane?

2018 239 Open Mathematical Olympiad, 10-11.1

Prove that in any convex polygon where all pairwise distances between vertices are distinct, there exists a vertex such that the closest vertex of the polygon is adjacent to it. [i]Proposed by D. Shiryayev, S. Berlov[/i]

2011 Puerto Rico Team Selection Test, 4

Let $P$ be a point inside the triangle $ABC$, such that the angles $\angle CBP$ and $\angle PAC$ are equal. Denote the intersection of the line $AP$ and the segment $BC$ by $D$, and the intersection of the line $BP$ with the segment $AC$ by $E$. The circumcircles of the triangles $ADC$ and $BEC$ meet at $C$ and $F$. Show that the line $CP$ bisects the angle $DFE$. Please remember to hide your solution. (by using the hide tags of course.. I don't literally mean that you should hide it :ninja: )

2013 Oral Moscow Geometry Olympiad, 2

Inside the angle $AOD$, the rays $OB$ and $OC$ are drawn such that $\angle AOB = \angle COD.$ Two circles are inscribed inside the angles $\angle AOB$ and $\angle COD$ . Prove that the intersection point of the common internal tangents of these circles lies on the bisector of the angle $AOD$.

1991 AMC 8, 15

All six sides of a rectangular solid were rectangles. A one-foot cube was cut out of the rectangular solid as shown. The total number of square feet in the surface of the new solid is how many more or less than that of the original solid? [asy] unitsize(20); draw((0,0)--(1,0)--(1,3)--(0,3)--cycle); draw((1,0)--(1+9*sqrt(3)/2,9/2)--(1+9*sqrt(3)/2,15/2)--(1+5*sqrt(3)/2,11/2)--(1+5*sqrt(3)/2,9/2)--(1+2*sqrt(3),4)--(1+2*sqrt(3),5)--(1,3)); draw((0,3)--(2*sqrt(3),5)--(1+2*sqrt(3),5)); draw((1+9*sqrt(3)/2,15/2)--(9*sqrt(3)/2,15/2)--(5*sqrt(3)/2,11/2)--(5*sqrt(3)/2,5)); draw((1+5*sqrt(3)/2,9/2)--(1+2*sqrt(3),9/2)); draw((1+5*sqrt(3)/2,11/2)--(5*sqrt(3)/2,11/2)); label("$1'$",(.5,0),S); label("$3'$",(1,1.5),E); label("$9'$",(1+9*sqrt(3)/4,9/4),S); label("$1'$",(1+9*sqrt(3)/4,17/4),S); label("$1'$",(1+5*sqrt(3)/2,5),E);label("$1'$",(1/2+5*sqrt(3)/2,11/2),S); [/asy] $\text{(A)}\ 2\text{ less} \qquad \text{(B)}\ 1\text{ less} \qquad \text{(C)}\ \text{the same} \qquad \text{(D)}\ 1\text{ more} \qquad \text{(E)}\ 2\text{ more}$

1985 IMO, 1

A circle has center on the side $AB$ of the cyclic quadrilateral $ABCD$. The other three sides are tangent to the circle. Prove that $AD+BC=AB$.

2021 China National Olympiad, 4

Tags: china mo , geometry
In acute triangle $ABC (AB>AC)$, $M$ is the midpoint of minor arc $BC$, $O$ is the circumcenter of $(ABC)$ and $AK$ is its diameter. The line parallel to $AM$ through $O$ meets segment $AB$ at $D$, and $CA$ extended at $E$. Lines $BM$ and $CK$ meet at $P$, lines $BK$ and $CM$ meet at $Q$. Prove that $\angle OPB+\angle OEB =\angle OQC+\angle ODC$.

1985 Traian Lălescu, 1.2

For the triangles of fixed perimeter, find the maximum value of the product of the radius of the incircle with the radius of the excircle.

2021 Peru Cono Sur TST., P3

Let $ABC$ be a triangle and $D$ is a point in $BC$. The line $DA$ cuts the circumcircle of $ABC$ in the point $E$. Let $M$ and $N$ be the midpoints of $AB$ and $CD$, respectively. Let $F=MN\cap AD$ and $G\neq F$ is the point of intersection of the circumcircles of $\triangle DNF$ and $\triangle ECF$. Prove that $B,F$ and $G$ are collinears.

2019 ELMO Shortlist, G4

Tags: geometry
Let triangle $ABC$ have altitudes $BE$ and $CF$ which meet at $H$. The reflection of $A$ over $BC$ is $A'$. Let $(ABC)$ meet $(AA'E)$ at $P$ and $(AA'F)$ at $Q$. Let $BC$ meet $PQ$ at $R$. Prove that $EF \parallel HR$. [i]Proposed by Daniel Hu[/i]

2018 India PRMO, 17

Triangles $ABC$ and $DEF$ are such that $\angle A = \angle D, AB = DE = 17, BC = EF = 10$ and $AC - DF = 12$. What is $AC + DF$?

1992 Yugoslav Team Selection Test, Problem 1

Tags: geometry , triangle
Three squares $BCDE,CAFG$ and $ABHI$ are constructed outside the triangle $ABC$. Let $GCDQ$ and $EBHP$ be parallelograms. Prove that $APQ$ is an isosceles right triangle.

2017 Bulgaria National Olympiad, 1

Tags: geometry
An convex qudrilateral $ABCD$ is given. $O$ is the intersection point of the diagonals $AC$ and $BD$. The points $A_1,B_1,C_1, D_1$ lie respectively on $AO, BO, CO, DO$ such that $AA_1=CC_1, BB_1=DD_1$. The circumcircles of $\triangle AOB$ and $\triangle COD$ meet at second time at $M$ and the the circumcircles of $\triangle AOD$ and $\triangle BOC$ - at $N$. The circumcircles of $\triangle A_1OB_1$ and $\triangle C_1OD_1$ meet at second time at $P$ and the the circumcircles of $\triangle A_1OD_1$ and $\triangle B_1OC_1$ - at $Q$. Prove that the quadrilateral $MNPQ$ is cyclic.

Durer Math Competition CD Finals - geometry, 2010.C1

Tags: geometry , radius
Dürer explains art history to his students. The following gothic window is examined. Where the center of the arc of $BC$ is $A$, and similarly the center of the arc of $AC$ is $B$. The question is how much is the radius of the circle (radius marked $r$ in the figure).[img]https://cdn.artofproblemsolving.com/attachments/5/c/28e5ee47005bfde7f925908b519099d5e28d91.png[/img]

1985 IberoAmerican, 2

Let $ P$ be a point in the interior of the equilateral triangle $ \triangle{}ABC$ such that $ PA \equal{} 5$, $ PB \equal{} 7$, $ PC \equal{} 8$. Find the length of the side of the triangle $ ABC$.

1997 IMO, 1

In the plane the points with integer coordinates are the vertices of unit squares. The squares are coloured alternately black and white (as on a chessboard). For any pair of positive integers $ m$ and $ n$, consider a right-angled triangle whose vertices have integer coordinates and whose legs, of lengths $ m$ and $ n$, lie along edges of the squares. Let $ S_1$ be the total area of the black part of the triangle and $ S_2$ be the total area of the white part. Let $ f(m,n) \equal{} | S_1 \minus{} S_2 |$. a) Calculate $ f(m,n)$ for all positive integers $ m$ and $ n$ which are either both even or both odd. b) Prove that $ f(m,n) \leq \frac 12 \max \{m,n \}$ for all $ m$ and $ n$. c) Show that there is no constant $ C\in\mathbb{R}$ such that $ f(m,n) < C$ for all $ m$ and $ n$.

2023 UMD Math Competition Part I, #9

Tags: geometry
The Amazing Prime company ships its products in boxes whose length, width, and height (in inches) are prime numbers. If the volume of one of their boxes is $105$ cubic inches, what is its surface area (that is, the sum of the areas of the 6 sides of the box) in square inches? $$ \mathrm a. ~ 21\qquad \mathrm b.~71\qquad \mathrm c. ~77 \qquad \mathrm d. ~05 \qquad \mathrm e. ~142 $$

2012 HMNT, 6

Tags: geometry
A rectangular piece of paper with vertices $ABCD$ is being cut by a pair of scissors. The pair of scissors starts at vertex $A$, and then cuts along the angle bisector of $DAB$ until it reaches another edge of the paper. One of the two resulting pieces of paper has $4$ times the area of the other piece. What is the ratio of the longer side of the original paper to the shorter side?

1966 IMO Shortlist, 37

Show that the four perpendiculars dropped from the midpoints of the sides of a cyclic quadrilateral to the respective opposite sides are concurrent. [b]Note by Darij:[/b] A [i]cyclic quadrilateral [/i]is a quadrilateral inscribed in a circle.

2017 Indonesia MO, 7

Let $ABCD$ be a parallelogram. $E$ and $F$ are on $BC, CD$ respectively such that the triangles $ABE$ and $BCF$ have the same area. Let $BD$ intersect $AE, AF$ at $M, N$ respectively. Prove there exists a triangle whose side lengths are $BM, MN, ND$.