Found problems: 25757
1969 IMO Longlists, 4
$(BEL 4)$ Let $O$ be a point on a nondegenerate conic. A right angle with vertex $O$ intersects the conic at points $A$ and $B$. Prove that the line $AB$ passes through a fixed point located on the normal to the conic through the point $O.$
2013 Harvard-MIT Mathematics Tournament, 6
Let $R$ be the region in the Cartesian plane of points $(x,y)$ satisfying $x\geq 0$, $y\geq 0$, and $x+y+\lfloor x\rfloor+\lfloor y\rfloor\leq 5$. Determine the area of $R$.
2022 Dutch BxMO TST, 2
Let $ABC$ be an acute triangle, and let $D$ be the foot of the altitude from $A$. The circle with centre $A$ passing through $D$ intersects the circumcircle of triangle $ABC$ in $X$ and $Y$ , in such a way that the order of the points on this circumcircle is: $A, X, B, C, Y$ . Show that $\angle BXD = \angle CYD$.
2013 IPhOO, 10
Two masses are connected with spring constant $k$. The masses have magnitudes $m$ and $M$. The center-of-mass of the system is fixed. If $ k = \text {100 N/m} $ and $m=\dfrac{1}{2}M=\text{1 kg}$, let the ground state energy of the system be $E$. If $E$ can be expressed in the form $ a \times 10^p $ eV (electron-volts), find the ordered pair $(a,p)$, where $ 0 < a < 10 $, and it is rounded to the nearest positive integer and $p$ is an integer. For example, $ 4.2 \times 10^7 $ should be expressed as $(4,7)$.
[i](Trung Phan, 10 points)[/i]
2000 Denmark MO - Mohr Contest, 3
A [i]Georg Mohr[/i] cube is a cube with six faces printed respectively $G, E, O, R, M$ and $H$. Peter has nine identical Georg Mohr dice. Is it possible to stack them on top of each other for a tower there on each of the four pages in some order show the letters $G\,\, E \,\, O \,\, R \,\, G \,\, M \,\, O \,\, H \,\, R$?
2021 Bulgaria EGMO TST, 4
In a convex $n$-gon, several diagonals are drawn. Among these diagonals, a diagonal is called [i]good[/i] if it intersects exactly one other diagonal drawn (in the interior of the $n$-gon). Find the maximum number of good diagonals.
2021/2022 Tournament of Towns, P4
Given is a segment $AB$. Three points $X, Y, Z$ are picked in the space so that $ABX$ is an equilateral triangle and $ABYZ$ is a square. Prove that the orthocenters of all triangles $XYZ$ obtained in this way belong to a fixed circle.
[i]Alexandr Matveev[/i]
2021 Harvard-MIT Mathematics Tournament., 7
In triangle $ABC$, let $M$ be the midpoint of $BC$ and $D$ be a point on segment $AM$. Distinct points $Y$ and $Z$ are chosen on rays $\overrightarrow{CA}$ and $\overrightarrow{BA}$ , respectively, such that $\angle DYC=\angle DCB$ and $\angle DBC=\angle DZB$. Prove that the circumcircle of $\Delta DYZ$ is tangent to the circumcircle of $\Delta DBC$.
2016 Latvia Baltic Way TST, 12
For what positive numbers $m$ and $n$ do there exist points $A_1, ..., Am$ and $B_1 ..., B_n$ in the plane such that, for any point $P$, the equation $$|PA_1|^2 +... + |PA_m|^2 =|PB_1|^2+...+|PA_n|^2 $$ holds true?
2006 AIME Problems, 9
Circles $\mathcal{C}_1$, $\mathcal{C}_2$, and $\mathcal{C}_3$ have their centers at (0,0), (12,0), and (24,0), and have radii 1, 2, and 4, respectively. Line $t_1$ is a common internal tangent to $\mathcal{C}_1$ and $\mathcal{C}_2$ and has a positive slope, and line $t_2$ is a common internal tangent to $\mathcal{C}_2$ and $\mathcal{C}_3$ and has a negative slope. Given that lines $t_1$ and $t_2$ intersect at $(x,y)$, and that $x=p-q\sqrt{r}$, where $p$, $q$, and $r$ are positive integers and $r$ is not divisible by the square of any prime, find $p+q+r$.
2005 China Team Selection Test, 2
Let $\omega$ be the circumcircle of acute triangle $ABC$. Two tangents of $\omega$ from $B$ and $C$ intersect at $P$, $AP$ and $BC$ intersect at $D$. Point $E$, $F$ are on $AC$ and $AB$ such that $DE \parallel BA$ and $DF \parallel CA$.
(1) Prove that $F,B,C,E$ are concyclic.
(2) Denote $A_{1}$ the centre of the circle passing through $F,B,C,E$. $B_{1}$, $C_{1}$ are difined similarly. Prove that $AA_{1}$, $BB_{1}$, $CC_{1}$ are concurrent.
2021 South East Mathematical Olympiad, 6
Let $ABCD$ be a cyclic quadrilateral. Let $E$ be a point on side $BC,$ $F$ be a point on side $AE,$ $G$ be a point on the exterior angle bisector of $\angle BCD,$ such that $EG=FG,$ $\angle EAG=\dfrac12\angle BAD.$ Prove that $AB\cdot AF=AD\cdot AE.$
Durer Math Competition CD Finals - geometry, 2018.C+2
Given an $ABC$ triangle. Let $D$ be an extension of section $AB$ beyond $A$ such that that $AD = BC$ and $E$ is the extension of the section $BC$ beyond $B$ such that $BE = AC$. Prove that the circumcircle of triangle $DEB$ passes through the center of the inscribed circle of triangle $ABC$.
Kyiv City MO 1984-93 - geometry, 1993.11.3
Two cubes are inscribed in a sphere of radius $R$. Calculate the sum of squares of all segments connecting the vertices of one cube with the vertices of the other cube
2016 Kosovo National Mathematical Olympiad, 5
It is given rectangle $ABCD$ with length $|AB|=15cm$ and with length of altitude $|BE|=12cm$ where $BC$ is altitude of triangle $ABC$ . Find perimeter and area of rectangle $ABCD$ .
1999 Slovenia National Olympiad, Problem 3
Let $O$ be the circumcenter of a triangle $ABC$, $P$ be the midpoint of $AO$, and $Q$ be the midpoint of $BC$. If $\angle ABC=4\angle OPQ$ and $\angle ACB=6\angle OPQ$, compute $\angle OPQ$.
1973 IMO Shortlist, 1
Let a tetrahedron $ABCD$ be inscribed in a sphere $S$. Find the locus of points $P$ inside the sphere $S$ for which the equality
\[\frac{AP}{PA_1}+\frac{BP}{PB_1}+\frac{CP}{PC_1}+\frac{DP}{PD_1}=4\]
holds, where $A_1,B_1, C_1$, and $D_1$ are the intersection points of $S$ with the lines $AP,BP,CP$, and $DP$, respectively.
2013 Saudi Arabia IMO TST, 3
Let $ABC$ be an acute triangle, $M$ be the midpoint of $BC$ and $P$ be a point on line segment $AM$. Lines $BP$ and $CP$ meet the circumcircle of $ABC$ again at $X$ and $Y$ , respectively, and sides $AC$ at $D$ and $AB$ at $E$, respectively. Prove that the circumcircles of $AXD$ and $AYE$ have a common point $T \ne A$ on line $AM$.
2002 Kazakhstan National Olympiad, 1
Let $ O $ be the center of the inscribed circle of the triangle $ ABC $, tangent to the side of $ BC $. Let $ M $ be the midpoint of $ AC $, and $ P $ be the intersection point of $ MO $ and $ BC $. Prove that $ AB = BP $ if $ \angle BAC = 2 \angle ACB $.
2010 Stanford Mathematics Tournament, 11
What is the area of the regular hexagon with perimeter $60$?
1966 IMO Longlists, 7
For which arrangements of two infinite circular cylinders does their intersection lie in a plane?
EMCC Speed Rounds, 2019
[i]20 problems for 25 minutes.[/i]
[b]p1.[/b] Given that $a + 19b = 3$ and $a + 1019b = 5$, what is $a + 2019b$?
[b]p2.[/b] How many multiples of $3$ are there between $2019$ and $2119$, inclusive?
[b]p3.[/b] What is the maximum number of quadrilaterals a $12$-sided regular polygon can be quadrangulated into? Here quadrangulate means to cut the polygon along lines from vertex to vertex, none of which intersect inside the polygon, to form pieces which all have exactly $4$ sides.
[b]p4.[/b] What is the value of $|2\pi - 7| + |2\pi - 6|$, rounded to the nearest hundredth?
[b]p5.[/b] In the town of EMCCxeter, there is a $30\%$ chance that it will snow on Saturday, and independently, a $40\%$ chance that it will snow on Sunday. What is the probability that it snows exactly once that weekend, as a percentage?
[b]p6.[/b] Define $n!$ to be the product of all integers between $1$ and $n$ inclusive. Compute $\frac{2019!}{2017!} \times \frac{2016!}{2018!}$ .
[b]p7.[/b] There are $2019$ people standing in a row, and they are given positions $1$, $2$, $3$, $...$, $2019$ from left to right. Next, everyone in an odd position simultaneously leaves the row, and the remaining people are assigned new positions from $1$ to $1009$, again from left to right. This process is then repeated until one person remains. What was this person's original position?
[b]p8.[/b] The product $1234\times 4321$ contains exactly one digit not in the set $\{1, 2, 3, 4\}$. What is this digit?
[b]p9.[/b] A quadrilateral with positive area has four integer side lengths, with shortest side $1$ and longest side $9$. How many possible perimeters can this quadrilateral have?
[b]p10.[/b] Define $s(n)$ to be the sum of the digits of $n$ when expressed in base $10$, and let $\gamma (n)$ be the sum of $s(d)$ over all natural number divisors $d$ of $n$. For instance, $n = 11$ has two divisors, $1$ and $11$, so $\gamma (11) = s(1) + s(11) = 1 + (1 + 1) = 3$. Find the value of $\gamma (2019)$.
[b]p11.[/b] How many five-digit positive integers are divisible by $9$ and have $3$ as the tens digit?
[b]p12.[/b] Adam owns a large rectangular block of cheese, that has a square base of side length $15$ inches, and a height of $4$ inches. He wants to remove a cylindrical cheese chunk of height $4$, by making a circular hole that goes through the top and bottom faces, but he wants the surface area of the leftover cheese block to be the same as before. What should the diameter of his hole be, in inches?
[i]Αddendum on 1/26/19: the hole must have non-zero diameter.
[/i]
[b]p13.[/b] Find the smallest prime that does not divide $20! + 19! + 2019!$.
[b]p14.[/b] Convex pentagon $ABCDE$ has angles $\angle ABC = \angle BCD = \angle DEA = \angle EAB$ and angle $\angle CDE = 60^o$. Given that $BC = 3$, $CD = 4$, and $DE = 5$, find $EA$.
[i]Addendum on 1/26/19: ABCDE is specified to be convex.
[/i]
[b]p15.[/b] Sophia has $3$ pairs of red socks, $4$ pairs of blue socks, and $5$ pairs of green socks. She picks out two individual socks at random: what is the probability she gets a pair with matching color?
[b]p16.[/b] How many real roots does the function $f(x) = 2019^x - 2019x - 2019$ have?
[b]p17.[/b] A $30-60-90$ triangle is placed on a coordinate plane with its short leg of length $6$ along the $x$-axis, and its long leg along the $y$-axis. It is then rotated $90$ degrees counterclockwise, so that the short leg now lies along the $y$-axis and long leg along the $x$-axis. What is the total area swept out by the triangle during this rotation?
[b]p18.[/b] Find the number of ways to color the unit cells of a $2\times 4$ grid in four colors such that all four colors are used and every cell shares an edge with another cell of the same color.
[b]p19.[/b] Triangle $\vartriangle ABC$ has centroid $G$, and $X, Y,Z$ are the centroids of triangles $\vartriangle BCG$, $\vartriangle ACG$, and $\vartriangle ABG$, respectively. Furthermore, for some points $D,E, F$, vertices $A,B,C$ are themselves the centroids of triangles $\vartriangle DBC$, $\vartriangle ECA$, and $\vartriangle FAB$, respectively. If the area of $\vartriangle XY Z = 7$, what is the area of $\vartriangle DEF$?
[b]p20.[/b] Fhomas orders three $2$-gallon jugs of milk from EMCCBay for his breakfast omelette. However, every jug is actually shipped with a random amount of milk (not necessarily an integer), uniformly distributed between $0$ and $2$ gallons. If Fhomas needs $2$ gallons of milk for his breakfast omelette, what is the probability he will receive enough milk?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 ASDAN Math Tournament, 3
Consider an equilateral triangle $\vartriangle ABC$ with side length $1$. Let $D$ and $E$ lie on segments $AB$ and $AC$ respectively such that $\angle ADE = 30^o$ and $DE$ is tangent to the incircle of $\vartriangle ABC$. Compute the perimeter of $\vartriangle ADE$.
2002 Mongolian Mathematical Olympiad, Problem 2
For a natural number $p$, one can move between two points with integer coordinates if the distance between them equals $p$. Find all prime numbers $p$ for which it is possible to reach the point $(2002,38)$ starting from the origin $(0,0)$.
2010 USA Team Selection Test, 3
Let $h_a, h_b, h_c$ be the lengths of the altitudes of a triangle $ABC$ from $A, B, C$ respectively. Let $P$ be any point inside the triangle. Show that
\[\frac{PA}{h_b+h_c} + \frac{PB}{h_a+h_c} + \frac{PC}{h_a+h_b} \ge 1.\]