Found problems: 25757
1954 Moscow Mathematical Olympiad, 279
Given four straight lines, $m_1, m_2, m_3, m_4$, intersecting at $O$ and numbered clockwise with $O$ as the center of the clock, we draw a line through an arbitrary point $A_1$ on $m_1$ parallel to $m_4$ until the line meets $m_2$ at $A_2$. We draw a line through $A_2$ parallel to $m_1$ until it meets $m_3$ at $A_3$. We also draw a line through $A_3$ parallel to $m_2$ until it meets $m_4$ at $A_4$. Now, we draw a line through$ A_4$ parallel to $m_3$ until it meets $m_1$ at $B$. Prove that
a) $OB< \frac{OA_1}{2}$ .
b) $OB \le \frac{OA_1}{4}$ .
[img]https://cdn.artofproblemsolving.com/attachments/5/f/5ea08453605e02e7e1253fd7c74065a9ffbd8e.png[/img]
Durer Math Competition CD 1st Round - geometry, 2016.C+3
Let $ABCD$ be a square with unit sides. Which interior point $P$ will the expression $\sqrt2 \cdot AP + BP + CP$ have a minimum value, and what is this minimum?
2020 MOAA, Sets 1-5
[u]Set 1[/u]
[b]B1.[/b] Evaluate $2 + 0 - 2 \times 0$.
[b]B2.[/b] It takes four painters four hours to paint four houses. How many hours does it take forty painters to paint forty houses?
[b]B3.[/b] Let $a$ be the answer to this question. What is $\frac{1}{2-a}$?
[u]Set 2[/u]
[b]B4.[/b] Every day at Andover is either sunny or rainy. If today is sunny, there is a $60\%$ chance that tomorrow is sunny and a $40\%$ chance that tomorrow is rainy. On the other hand, if today is rainy, there is a $60\%$ chance that tomorrow is rainy and a $40\%$ chance that tomorrow is sunny. Given that today is sunny, the probability that the day after tomorrow is sunny can be expressed as n%, where n is a positive integer. What is $n$?
[b]B5.[/b] In the diagram below, what is the value of $\angle DD'Y$ in degrees?
[img]https://cdn.artofproblemsolving.com/attachments/0/8/6c966b13c840fa1885948d0e4ad598f36bee9d.png[/img]
[b]B6.[/b] Christina, Jeremy, Will, and Nathan are standing in a line. In how many ways can they be arranged such that Christina is to the left of Will and Jeremy is to the left of Nathan?
Note: Christina does not have to be next to Will and Jeremy does not have to be next to Nathan. For example, arranging them as Christina, Jeremy, Will, Nathan would be valid.
[u]Set 3[/u]
[b]B7.[/b] Let $P$ be a point on side $AB$ of square $ABCD$ with side length $8$ such that $PA = 3$. Let $Q$ be a point on side $AD$ such that $P Q \perp P C$. The area of quadrilateral $PQDB$ can be expressed in the form $m/n$ for relatively prime positive integers $m$ and $n$. Compute $m + n$.
[b]B8.[/b] Jessica and Jeffrey each pick a number uniformly at random from the set $\{1, 2, 3, 4, 5\}$ (they could pick the same number). If Jessica’s number is $x$ and Jeffrey’s number is $y$, the probability that $x^y$ has a units digit of $1$ can be expressed as $m/n$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[b]B9.[/b] For two points $(x_1, y_1)$ and $(x_2, y_2)$ in the plane, we define the taxicab distance between them as $|x_1 - x_2| + |y_1 - y_2|$. For example, the taxicab distance between $(-1, 2)$ and $(3,\sqrt2)$ is $6-\sqrt2$. What is the largest number of points Nathan can find in the plane such that the taxicab distance between any two of the points is the same?
[u]Set 4[/u]
[b]B10.[/b] Will wants to insert some × symbols between the following numbers: $$1\,\,\,2\,\,\,3\,\,\,4\,\,\,6$$ to see what kinds of answers he can get. For example, here is one way he can insert $\times$ symbols: $$1 \times 23 \times 4 \times 6 = 552.$$ Will discovers that he can obtain the number $276$. What is the sum of the numbers that he multiplied together to get $276$?
[b]B11.[/b] Let $ABCD$ be a parallelogram with $AB = 5$, $BC = 3$, and $\angle BAD = 60^o$ . Let the angle bisector of $\angle ADC$ meet $AC$ at $E$ and $AB$ at $F$. The length $EF$ can be expressed as $m/n$, where $m$ and $n$ are relatively prime positive integers. What is $m + n$?
[b]B12.[/b] Find the sum of all positive integers $n$ such that $\lfloor \sqrt{n^2 - 2n + 19} \rfloor = n$.
Note: $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.
[u]Set 5[/u]
[b]B13.[/b] This year, February $29$ fell on a Saturday. What is the next year in which February $29$ will be a Saturday?
[b]B14.[/b] Let $f(x) = \frac{1}{x} - 1$. Evaluate $$f\left( \frac{1}{2020}\right) \times f\left( \frac{2}{2020}\right) \times f\left( \frac{3}{2020}\right) \times \times ... \times f\left( \frac{2019}{2020}\right) .$$
[b]B15.[/b] Square $WXYZ$ is inscribed in square $ABCD$ with side length $1$ such that $W$ is on $AB$, $X$ is on $BC$, $Y$ is on $CD$, and $Z$ is on $DA$. Line $W Y$ hits $AD$ and $BC$ at points $P$ and $R$ respectively, and line $XZ$ hits $AB$ and $CD$ at points $Q$ and $S$ respectively. If the area of $WXYZ$ is $\frac{13}{18}$ , then the area of $PQRS$ can be expressed as $m/n$ for relatively prime positive integers $m$ and $n$. What is $m + n$?
PS. You had better use hide for answers. Last sets have been posted [url=https://artofproblemsolving.com/community/c4h2777424p24371574]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 Belarusian National Olympiad, 11.4
A checkered polygon $A$ is drawn on the checkered plane. We call a cell of $A$ [i]internal[/i] if all $8$ of its adjacent cells belong to $A$. All other (non-internal) cells of $A$ we call [i]boundary[/i]. It is known that $1)$ each boundary cell has exactly two common sides with no boundary cells; and 2) the union of all boundary cells can be divided into isosceles trapezoid of area $2$ with vertices at the grid nodes (and acute angles of the trapezoids are equal $45^\circ$).
Prove that the area of the polygon $A$ is congruent to $1$ modulo $4$.
2003 Portugal MO, 1
The planet Caramelo is a cube with a $1$ km edge. This planet is going to be wrapped with foam anti-gluttons in order to prevent the presence of greedy ships less than $500$ meters from the planet. What the minimum volume of foam that must surround the planet?
2010 Indonesia TST, 3
Let $ABCD$ be a convex quadrilateral with $AB$ is not parallel to $CD$. Circle $\omega_1$ with center $O_1$ passes through $A$ and $B$, and touches segment $CD$ at $P$. Circle $\omega_2$ with center $O_2$ passes through $C$ and $D$, and touches segment $AB$ at $Q$. Let $E$ and $F$ be the intersection of circles $\omega_1$ and $\omega_2$. Prove that $EF$ bisects segment $PQ$ if and only if $BC$ is parallel to $AD$.
1994 Swedish Mathematical Competition, 2
In the triangle $ABC$, the medians from $B$ and $C$ are perpendicular. Show that $\cot B + \cot C \ge \frac23$.
2013 Vietnam National Olympiad, 3
Let $ABC$ be a triangle such that $ABC$ isn't a isosceles triangle. $(I)$ is incircle of triangle touches $BC,CA,AB$ at $D,E,F$ respectively. The line through $E$ perpendicular to $BI$ cuts $(I)$ again at $K$. The line through $F$ perpendicular to $CI$ cuts $(I)$ again at $L$.$J$ is midpoint of $KL$.
[b]a)[/b] Prove that $D,I,J$ collinear.
[b]b)[/b] $B,C$ are fixed points,$A$ is moved point such that $\frac{AB}{AC}=k$ with $k$ is constant.$IE,IF$ cut $(I)$ again at $M,N$ respectively.$MN$ cuts $IB,IC$ at $P,Q$ respectively. Prove that bisector perpendicular of $PQ$ through a fixed point.
1993 All-Russian Olympiad, 2
Segments $AB$ and $CD$ of length $1$ intersect at point $O$ and angle $AOC$ is equal to sixty degrees. Prove that $AC+BD \ge 1$.
Ukrainian From Tasks to Tasks - geometry, 2012.13
The sides of a triangle are consecutive natural numbers, and the radius of the inscribed circle is $4$. Find the radius of the circumscribed circle.
2019 Balkan MO Shortlist, G2
Let be a triangle $\triangle ABC$ with $m(\angle ABC) = 75^{\circ}$ and $m(\angle ACB) = 45^{\circ}$. The angle bisector of $\angle CAB$ intersects $CB$ at point $D$. We consider the point $E \in (AB)$, such that $DE = DC$. Let $P$ be the intersection of lines $AD$ and $CE$. Prove that $P$ is the midpoint of segment $AD$.
2005 Morocco National Olympiad, 1
In a square $ABCD$ let $F$ be the midpoint of $\left[ CD\right] $ and let $E$ be a point on $\left[ AB\right] $ such that $AE>EB$ . the parallel with $\left( DE\right) $ passing by $F$ meets the segment $\left[ BC\right] $ at $H$.
Prove that the line $\left( EH\right) $ is tangent to the circle circumscribed with $ABCD$
2003 China Western Mathematical Olympiad, 4
Given that the sum of the distances from point $ P$ in the interior of a convex quadrilateral $ ABCD$ to the sides $ AB, BC, CD, DA$ is a constant, prove that $ ABCD$ is a parallelogram.
2010 Dutch IMO TST, 1
Let $ABC$ be an acute triangle such that $\angle BAC = 45^o$. Let $D$ a point on $AB$ such that $CD \perp AB$. Let $P$ be an internal point of the segment $CD$. Prove that $AP\perp BC$ if and only if $|AP| = |BC|$.
2023 Sharygin Geometry Olympiad, 10.7
There are $43$ points in the space: $3$ yellow and $40$ red. Any four of them are not coplanar. May the number of triangles with red vertices hooked with the triangle with yellow vertices be equal to $2023$? Yellow triangle is hooked with the red one if the boundary of the red triangle meet the part of the plane bounded by the yellow triangle at the unique point. The triangles obtained by the transpositions of vertices are identical.
2010 Contests, 1
Let $ABCDEF$ be a convex hexagon in which diagonals $AD, BE, CF$ are concurrent at $O$. Suppose $[OAF]$ is geometric mean of $[OAB]$ and $[OEF]$ and $[OBC]$ is geometric mean of $[OAB]$ and $[OCD]$. Prove that $[OED]$ is the geometric mean of $[OCD]$ and $[OEF]$.
(Here $[XYZ]$ denotes are of $\triangle XYZ$)
2013 Stanford Mathematics Tournament, 3
Robin has obtained a circular pizza with radius $2$. However, being rebellious, instead of slicing the pizza radially, he decides to slice the pizza into $4$ strips of equal width both vertically and horizontally. What is the area of the smallest piece of pizza?
1996 Argentina National Olympiad, 4
Let $ABCD$ be a parallelogram with center $O$ such that $\angle BAD <90^o$ and $\angle AOB> 90^o$. Consider points $A_1$ and $B_1$ on the rays $OA$ and $OB$ respectively, such that $A_1B_1$ is parallel to $AB$ and $\angle A_1B_1C = \frac12 \angle ABC$. Prove that $A_1D$ is perpendicular to $B_1C$.
2013 Cono Sur Olympiad, 6
Let $ABCD$ be a convex quadrilateral. Let $n \geq 2$ be a whole number. Prove that there are $n$ triangles with the same area that satisfy all of the following properties:
a) Their interiors are disjoint, that is, the triangles do not overlap.
b) Each triangle lies either in $ABCD$ or inside of it.
c) The sum of the areas of all of these triangles is at least $\frac{4n}{4n+1}$ the area of $ABCD$.
2016 USA Team Selection Test, 3
Let $ABC$ be an acute scalene triangle and let $P$ be a point in its interior. Let $A_1$, $B_1$, $C_1$ be projections of $P$ onto triangle sides $BC$, $CA$, $AB$, respectively. Find the locus of points $P$ such that $AA_1$, $BB_1$, $CC_1$ are concurrent and $\angle PAB + \angle PBC + \angle PCA = 90^{\circ}$.
2013 IMO Shortlist, G4
Let $ABC$ be a triangle with $\angle B > \angle C$. Let $P$ and $Q$ be two different points on line $AC$ such that $\angle PBA = \angle QBA = \angle ACB $ and $A$ is located between $P$ and $C$. Suppose that there exists an interior point $D$ of segment $BQ$ for which $PD=PB$. Let the ray $AD$ intersect the circle $ABC$ at $R \neq A$. Prove that $QB = QR$.
1997 Romania Team Selection Test, 2
Let $P$ be the set of points in the plane and $D$ the set of lines in the plane. Determine whether there exists a bijective function $f: P \rightarrow D$ such that for any three collinear points $A$, $B$, $C$, the lines $f(A)$, $f(B)$, $f(C)$ are either parallel or concurrent.
[i]Gefry Barad[/i]
2018 Harvard-MIT Mathematics Tournament, 9
Po picks $100$ points $P_1,P_2,\cdots, P_{100}$ on a circle independently and uniformly at random. He then draws the line segments connecting $P_1P_2,P_2P_3,\ldots,P_{100}P_1.$ Find the expected number of regions that have all sides bounded by straight lines.
2015 Switzerland Team Selection Test, 3
Let $ABC$ be a triangle with $AB> AC$. Let $D$ be a point on $AB$ such that $DB = DC$ and $M$ the middle of $AC$. The parallel to $BC$ passing through $D$ intersects the line $BM$ in $K$. Show that $\angle KCD = \angle DAC$.
Math Hour Olympiad, Grades 8-10, 2011
[u]Round 1 [/u]
[b]p1. [/b]Twelve people, some are knights and some are knaves, are sitting around a table.
Knaves always lie and knights always tell the truth. At some point they start up a conversation.
The first person says, “There are no knights around this table.”
The second says, “There is at most one knight at this table.”
The third – “There are at most two knights at the table.”
And so on until the 12th says, “There are at most eleven knights at the table.”
How many knights are at the table? Justify your answer.
[b]p2.[/b] Show that in the sequence $10017$, $100117$, $1001117$, $...$ all numbers are divisible by $53$.
[b]p3.[/b] Harry and Draco have three wands: a bamboo wand, a willow wand, and a cherry wand, all of the same length. They must perform a spell wherein they take turns picking a wand and breaking it into three parts – first Harry, then Draco, then Harry again. But in order for the spell to work, Harry has to make sure it is possible to form three triangles out of the pieces of the wands, where each triangle has a piece from each wand. How should he break the wands to ensure the success of the spell?
[b]p4.[/b] A $2\times 2\times 2$ cube has $4$ equal squares on each face. The squares that share a side are called neighbors (thus, each square has $4$ neighbors – see picture). Is it possible to write an integer in each square in such a way that the sum of each number with its $4$ neighbors is equal to $13$? If yes, show how. If no, explain why not.
[img]https://cdn.artofproblemsolving.com/attachments/8/4/0f7457f40be40398dee806d125ba26780f9d3a.png[/img]
[b]p5.[/b] Two girls are playing a game. The first player writes the letters $A$ or $B$ in a row, left to right, adding one letter on her turn. The second player switches any two letters after each move by the first player (the letters do not have to be adjacent), or does nothing, which also counts as a move. The game is over when each player has made $2011$ moves. Can the second player plan her moves so that the resulting letters form a palindrome? (A palindrome is a sequence that reads the same forward and backwards, e.g. $AABABAA$.)
[u]Round 2 [/u]
[b]p6.[/b] A red square is placed on a table. $2010$ white squares, each the same size as the red square, are then placed on the table in such a way that the red square is fully covered and the sides of every white square are parallel to the sides of the red square. Is it always possible to remove one of the white squares so the red square remains completely covered?
[b]p7.[/b] A computer starts with a given positive integer to which it randomly adds either $54$ or $77$ every second and prints the resulting sum after each addition. For example, if the computer is given the number $1$, then a possible output could be: $1$, $55$, $109$, $186$, $…$ Show that after finitely many seconds the computer will print a number whose last two digits are the same.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].