This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1949 Putnam, A4

Given that $P$ is a point inside a tetrahedron with vertices at $A, B, C$ and $D$, such that the sum of the distances $PA+PB+PC+PD$ is a minimum, show that the two angles $\angle APB$ and $\angle CPD$ are equal and are bisected by the same straight line. What other pair of angles must be equal?

2013 CHMMC (Fall), Individual

[b]p1.[/b] Compute $$\sqrt{(\sqrt{63} +\sqrt{112} +\sqrt{175})(-\sqrt{63} +\sqrt{112} +\sqrt{175})(\sqrt{63}-\sqrt{112} +\sqrt{175})(\sqrt{63} +\sqrt{112} -\sqrt{175})}$$ [b]p2.[/b] Consider the set $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. How many distinct $3$-element subsets are there such that the sum of the elements in each subset is divisible by $3$? [b]p3.[/b] Let $a^2$ and $b^2$ be two integers. Consider the triangle with one vertex at the origin, and the other two at the intersections of the circle $x^2 + y^2 = a^2 + b^2$ with the graph $ay = b|x|$. If the area of the triangle is numerically equal to the radius of the circle, what is this area? [b]p4.[/b] Suppose $f(x) = x^3 + x - 1$ has roots $a$, $b$ and $c$. What is $$\frac{a^3}{1-a}+\frac{b^3}{1-b}+\frac{c^3}{1-c} ?$$ [b]p5.[/b] Lisa has a $2D$ rectangular box that is $48$ units long and $126$ units wide. She shines a laser beam into the box through one of the corners such that the beam is at a $45^o$ angle with respect to the sides of the box. Whenever the laser beam hits a side of the box, it is reflected perfectly, again at a $45^o$ angle. Compute the distance the laser beam travels until it hits one of the four corners of the box. [b]p6.[/b] How many ways can we form a group with an odd number of members (plural) from $99$ people total? Express your answer in the form $a^b + c$, where $a$, $b$, and $c$ are integers, and $a$ is prime. [b]p7.[/b] Let $$S = \log_2 9 \log_3 16 \log_4 25 ...\log_{999} 1000000.$$ Compute the greatest integer less than or equal to $\log_2 S$. [b]p8.[/b] A prison, housing exactly four hundred prisoners in four hundred cells numbered $1$-$400$, has a really messed-up warden. One night, when all the prisoners are asleep and all of their doors are locked, the warden toggles the locks on all of their doors (that is, if the door is locked, he unlocks the door, and if the door is unlocked, he locks it again), starting at door $1$ and ending at door $400$. The warden then toggles the lock on every other door starting at door $2$ ($2$, $4$, $6$, etc). After he has toggled the lock on every other door, the warden then toggles every third door (doors $3$, $6$, $9$, etc.), then every fourth door, etc., finishing by toggling every $400$th door (consisting of only the $400$th door). He then collapses in exhaustion. Compute the number of prisoners who go free (that is, the number of unlocked doors) when they wake up the next morning. [b]p9.[/b] Let $A$ and $B$ be fixed points on a $2$-dimensional plane with distance $AB = 1$. An ant walks on a straight line from point $A$ to some point $C$ on the same plane and finds that the distance from itself to $B$ always decreases at any time during this walk. Compute the area of the locus of points where point $C$ could possibly be located. [b]p10.[/b] A robot starts in the bottom left corner of a $4 \times 4$ grid of squares. How many ways can it travel to each square exactly once and then return to its start if it is only allowed to move to an adjacent (not diagonal) square at each step? [b]p11.[/b] Assuming real values for $p$, $q$, $r$, and $s$, the equation $$x^4 + px^3 + qx^2 + rx + s$$ has four non-real roots. The sum of two of these roots is $4 + 7i$, and the product of the other two roots is $3 - 4i$. Find $q$. [b]p12.[/b] A cube is inscribed in a right circular cone such that one face of the cube lies on the base of the cone. If the ratio of the height of the cone to the radius of the cone is $2 : 1$, what fraction of the cone's volume does the cube take up? Express your answer in simplest radical form. [b]p13.[/b] Let $$y =\dfrac{1}{1 +\dfrac{1}{9 +\dfrac{1}{5 +\dfrac{1}{9 +\dfrac{1}{5 +...}}}}}$$ If $y$ can be represented as $\frac{a\sqrt{b} + c}{d}$, where $b$ is not divisible by the square of any prime, and the greatest common divisor of $a$ and $d$ is $1$, find the sum $a + b + c + d$. [b]p14.[/b] Alice wants to paint each face of an octahedron either red or blue. She can paint any number of faces a particular color, including zero. Compute the number of ways in which she can do this. Two ways of painting the octahedron are considered the same if you can rotate the octahedron to get from one to the other. [b]p15.[/b] Find $n$ in the equation $$133^5 + 110^5 + 84^5 + 27^5 = n^5,$$ where $n$ is an integer less than $170$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 Tournament Of Towns, 3

$D$ is the midpoint of the side $BC$ of triangle $ABC$. $E$ and $F$ are points on $CA$ and $AB$ respectively, such that $BE$ is perpendicular to $CA$ and $CF$ is perpendicular to $AB$. If $DEF$ is an equilateral triangle, does it follow that $ABC$ is also equilateral?

2019 Iranian Geometry Olympiad, 1

Circles $\omega_1$ and $\omega_2$ intersect each other at points $A$ and $B$. Point $C$ lies on the tangent line from $A$ to $\omega_1$ such that $\angle ABC = 90^\circ$. Arbitrary line $\ell$ passes through $C$ and cuts $\omega_2$ at points $P$ and $Q$. Lines $AP$ and $AQ$ cut $\omega_1$ for the second time at points $X$ and $Z$ respectively. Let $Y$ be the foot of altitude from $A$ to $\ell$. Prove that points $X, Y$ and $Z$ are collinear. [i]Proposed by Iman Maghsoudi[/i]

1991 Tournament Of Towns, (282) 2

Each of three given circles with radii $1$, $r$ and $r$ touches the others from the outside. For what values of $r$ does there exist a triangle “circumscribed” to these circles? (This means the circles lie inside the triangle, each circle touching two sides of the triangle and each side of the triangle touching two circles.) (N.B. Vasiliev, Moscow)

2015 South East Mathematical Olympiad, 7

Tags: geometry
In $\triangle ABC$, we have $AB>AC>BC$. $D,E,F$ are the tangent points of the inscribed circle of $\triangle ABC$ with the line segments $AB,BC,AC$ respectively. The points $L,M,N$ are the midpoints of the line segments $DE,EF,FD$. The straight line $NL$ intersects with ray $AB$ at $P$, straight line $LM$ intersects ray $BC$ at $Q$ and the straight line $NM$ intersects ray $AC$ at $R$. Prove that $PA \cdot QB \cdot RC = PD \cdot QE \cdot RF$.

Indonesia MO Shortlist - geometry, g1.1

$ABCD$ is a parallelogram. $g$ is a line passing $A$. Prove that the distance from $C$ to $g$ is either the sum or the difference of the distance from $B$ to $g$, and the distance from $D$ to $g$.

1999 Harvard-MIT Mathematics Tournament, 6

Tags: geometry
A sphere of radius $1$ is covered in ink and rolling around between concentric spheres of radii $3$ and $5$. If this process traces a region of area 1 on the larger sphere, what is the area of the region traced on the smaller sphere?

2019 PUMaC Geometry B, 5

Tags: geometry
Let $BC=6$, $BX=3$, $CX=5$, and let $F$ be the midpoint of $\overline{BC}$. Let $\overline{AX}\perp\overline{BC}$ and $AF=\sqrt{247}$. If $AC$ is of the form $\sqrt{b}$ and $AB$ is of the form $\sqrt{c}$ where $b$ and $c$ are nonnegative integers, find $2c+3b$.

2016 Korea Summer Program Practice Test, 2

Tags: geometry
Let the incircle of triangle $ABC$ meet the sides $BC$, $CA$, $AB$ at $D$, $E$, $F$, and let the $A$-excircle meet the lines $BC$, $CA$, $AB$ at $P$, $Q$, $R$. Let the line passing through $A$ and perpendicular to $BC$ meet the lines $EF$, $QR$ at $K$, $L$. Let the intersection of $LD$ and $EF$ be $S$, and the intersection of $KP$ and $QR$ be $T$. Prove that $A$, $S$, $T$ are collinear.

2015 Azerbaijan JBMO TST, 3

There is a triangle $ABC$ that $AB$ is not equal to $AC$.$BD$ is interior bisector of $\angle{ABC}$($D\in AC$) $M$ is midpoint of $CBA$ arc.Circumcircle of $\triangle{BDM}$ cuts $AB$ at $K$ and $J,$ is symmetry of $A$ according $K$.If $DJ\cap AM=(O)$, Prove that $J,B,M,O$ are cyclic.

2000 Turkey Team Selection Test, 1

Show that any triangular prism of infinite length can be cut by a plane such that the resulting intersection is an equilateral triangle.

Ukrainian TYM Qualifying - geometry, XI.6

Prove that there exists a point $K$ in the plane of $\vartriangle ABC$ such that $$AK^2 - BC^2 = BK^2 - AC^2 = CK^2 - AB^2.$$ Let $Q, N, T$ be the points of intersection of the medians of the triangles $BKC, CKA, AKB$, respectively. Prove that the segments $AQ, BN$ and $CT$ are equal and have a common point.

2019 Saudi Arabia Pre-TST + Training Tests, 5.2

Let the bisector of the outside angle of $A$ of triangle $ABC$ and the circumcircle of triangle $ABC$ meet at point $P$. The circle passing through points $A$ and $P$ intersects segments $BP$ and $CP$ at points $E$ and $F$ respectively. Let $AD$ is the angle bisector of triangle $ABC$. Prove that $\angle PED = \angle PFD$. [img]https://cdn.artofproblemsolving.com/attachments/0/3/0638429a220f07227703a682479ed150302aae.png[/img]

Kyiv City MO Seniors 2003+ geometry, 2016.11.4.1

In the triangle $ABC$ the angle bisector $AD$ is drawn, $E$ is the point of tangency of the inscribed circle to the side $BC$, $I$ is the center of the inscribed circle $\Delta ABC$. The point ${{A} _ {1}}$ on the circumscribed circle $\Delta ABC$ is such that $A {{A} _ {1}} || BC$. Denote by $T$ - the second point of intersection of the line $E {{A} _ {1}}$ and the circumscribed circle $\Delta AED$. Prove that $IT = IA$.

1997 AIME Problems, 13

Let $ S$ be the set of points in the Cartesian plane that satisfy \[ \Big|\big|{|x| \minus{} 2}\big| \minus{} 1\Big| \plus{} \Big|\big|{|y| \minus{} 2}\big| \minus{} 1\Big| \equal{} 1. \] If a model of $ S$ were built from wire of negligible thickness, then the total length of wire required would be $ a\sqrt {b},$ where $ a$ and $ b$ are positive integers and $ b$ is not divisible by the square of any prime number. Find $ a \plus{} b.$

2019 Iran MO (3rd Round), 2

Consider an acute-angled triangle $ABC$ with $AB=AC$ and $\angle A>60^\circ$. Let $O$ be the circumcenter of $ABC$. Point $P$ lies on circumcircle of $BOC$ such that $BP\parallel AC$ and point $K$ lies on segment $AP$ such that $BK=BC$. Prove that $CK$ bisects the arc $BC$ of circumcircle of $BOC$.

2019 Yasinsky Geometry Olympiad, p3

Tags: geometry , area , hexagon
Let $ABCDEF$ be the regular hexagon. It is known that the area of the triangle $ACD$ is equal to $8$. Find the hexagonal area of $ABCDEF$.

2004 Tournament Of Towns, 4

Vanya has chosen two positive numbers, x and y. He wrote the numbers x+y, x-y, x/y, and xy, and has shown these numbers to Petya. However, he didn't say which of the numbers was obtained from which operation. Show that Petya can uniquely recover x and y.

1994 IMO Shortlist, 4

Let $ ABC$ be an isosceles triangle with $ AB \equal{} AC$. $ M$ is the midpoint of $ BC$ and $ O$ is the point on the line $ AM$ such that $ OB$ is perpendicular to $ AB$. $ Q$ is an arbitrary point on $ BC$ different from $ B$ and $ C$. $ E$ lies on the line $ AB$ and $ F$ lies on the line $ AC$ such that $ E, Q, F$ are distinct and collinear. Prove that $ OQ$ is perpendicular to $ EF$ if and only if $ QE \equal{} QF$.

2024 Sharygin Geometry Olympiad, 8.5

The vertices $M$, $N$, $K$ of rectangle $KLMN$ lie on the sides $AB$, $BC$, $CA$ respectively of a regular triangle $ABC$ in such a way that $AM = 2$, $KC = 1$. The vertex $L$ lies outside the triangle. Find the value of $\angle KMN$.

2018 Moldova EGMO TST, 8

Let $ABC$ be a triangle with $AB=c$ , $BC=a$ and $AC=b$. If $ x,y\in\mathbb{R}$ satisfy $ \frac{1}{x} +\frac{1}{y+z} = \frac{1}{a} $ , $ \frac{1}{y} +\frac{1}{x+z} = \frac{1}{b} $ , $ \frac{1}{z} +\frac{1}{y+x} = \frac{1}{c} $ . Prove that the following equality holds $ x(p-a) + y(p-b) + z(p-c) = 3r^2 + 12R*r , $ Where $p$ is semi-perimeter, $R$ is the circumradius and $r$ is the inradius.

2007 Korea National Olympiad, 1

Consider the string of length $ 6$ composed of three characters $ a$, $ b$, $ c$. For each string, if two $ a$s are next to each other, or two $ b$s are next to each other, then replace $ aa$ by $ b$, and replace $ bb$ by $ a$. Also, if $ a$ and $ b$ are next to each other, or two $ c$s are next to each other, remove all two of them (i.e. delete $ ab$, $ ba$, $ cc$). Determine the number of strings that can be reduced to $ c$, the string of length 1, by the reducing processes mentioned above.

2006 AMC 10, 19

A circle of radius 2 is centered at $ O$. Square $ OABC$ has side length 1. Sides $ \overline{AB}$ and $ \overline{CB}$ are extended past $ b$ to meet the circle at $ D$ and $ E$, respectively. What is the area of the shaded region in the figure, which is bounded by $ \overline{BD}$, $ \overline{BE}$, and the minor arc connecting $ D$ and $ E$? [asy] defaultpen(linewidth(0.8)); pair O=origin, A=(1,0), C=(0,1), B=(1,1), D=(1, sqrt(3)), E=(sqrt(3), 1), point=B; fill(Arc(O, 2, 0, 90)--O--cycle, mediumgray); clip(B--Arc(O, 2, 30, 60)--cycle); draw(Circle(origin, 2)); draw((-2,0)--(2,0)^^(0,-2)--(0,2)); draw(A--D^^C--E); label("$A$", A, dir(point--A)); label("$C$", C, dir(point--C)); label("$O$", O, dir(point--O)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$B$", B, SW);[/asy] $ \textbf{(A) } \frac {\pi}3 \plus{} 1 \minus{} \sqrt {3} \qquad \textbf{(B) } \frac {\pi}2\left( 2 \minus{} \sqrt {3}\right) \qquad \textbf{(C) } \pi\left(2 \minus{} \sqrt {3}\right) \qquad \textbf{(D) } \frac {\pi}{6} \plus{} \frac {\sqrt {3} \minus{} 1}{2} \\ \qquad \indent \textbf{(E) } \frac {\pi}{3} \minus{} 1 \plus{} \sqrt {3}$

2007 Mexico National Olympiad, 3

Tags: geometry
Let $ABC$ be a triangle with $AB>BC>CA$. Let $D$ be a point on $AB$ such that $CD=BC$, and let $M$ be the midpoint of $AC$. Show that $BD=AC$ and that $\angle BAC=2\angle ABM.$