This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 136

2018 Dutch IMO TST, 1

Suppose a grid with $2m$ rows and $2n$ columns is given, where $m$ and $n$ are positive integers. You may place one pawn on any square of this grid, except the bottom left one or the top right one. After placing the pawn, a snail wants to undertake a journey on the grid. Starting from the bottom left square, it wants to visit every square exactly once, except the one with the pawn on it, which the snail wants to avoid. Moreover, it wants to fi nish in the top right square. It can only move horizontally or vertically on the grid. On which squares can you put the pawn for the snail to be able to finish its journey?

2023 Romanian Master of Mathematics Shortlist, C2

For positive integers $m,n \geq 2$, let $S_{m,n} = \{(i,j): i \in \{1,2,\ldots,m\}, j\in \{1,2,\ldots,n\}\}$ be a grid of $mn$ lattice points on the coordinate plane. Determine all pairs $(m,n)$ for which there exists a simple polygon $P$ with vertices in $S_{m,n}$ such that all points in $S_{m,n}$ are on the boundary of $P$, all interior angles of $P$ are either $90^{\circ}$ or $270^{\circ}$ and all side lengths of $P$ are $1$ or $3$.

2021 Bolivia Ibero TST, 1

Let $n$ be a posititve integer. On a $n \times n$ grid there are $n^2$ unit squares and on these we color the sides with blue such that every unit square has exactly one side with blue. [b]a)[/b] Find the maximun number of blue unit sides we can have on the $n \times n$ grid. [b]b)[/b] Find the minimun number of blue unit sides we can have on the $n \times n$ grid.

2022 Korea Winter Program Practice Test, 3

Let $n\ge 3$ be a positive integer. Amy wrote all the integers from $1$ to $n^2$ on the $n\times n$ grid, so that each cell contains exactly one number. For $i=1,2,\cdots ,n^2-1$, the cell containing $i$ shares a common side with the cell containing $i+1$. Each turn, Bred can choose one cell, and check what number is written. Bred wants to know where $1$ is written by less than $3n$ turns. Determine whether $n$ such that Bred can always achieve his goal is infinite.

1993 Spain Mathematical Olympiad, 5

Given a 4×4 grid of points, the points at two opposite corners are denoted $A$ and $D$. We need to choose two other points $ B$ and $C$ such that the six pairwise distances of these four points are all distinct. (a) How many such quadruples of points are there? (b) How many such quadruples of points are non-congruent? (c) If each point is assigned a pair of coordinates $(x_i,y_i)$, prove that the sum of the expressions $|x_i-x_j |+|y_i-y_j|$ over all six pairs of points in a quadruple is constant.

2014 India Regional Mathematical Olympiad, 6

Suppose $n$ is odd and each square of an $n \times n$ grid is arbitrarily filled with either by $1$ or by $-1$. Let $r_j$ and $c_k$ denote the product of all numbers in $j$-th row and $k$-th column respectively, $1 \le j, k \le n$. Prove that $$\sum_{j=1}^{n} r_j+ \sum_{k=1}^{n} c_k\ne 0$$

2022 USAJMO, 2

Let $a$ and $b$ be positive integers. The cells of an $(a+b+1)\times (a+b+1)$ grid are colored amber and bronze such that there are at least $a^2+ab-b$ amber cells and at least $b^2+ab-a$ bronze cells. Prove that it is possible to choose $a$ amber cells and $b$ bronze cells such that no two of the $a+b$ chosen cells lie in the same row or column.

2015 Dutch IMO TST, 1

Let $a$ and $b$ be two positive integers satifying $gcd(a, b) = 1$. Consider a pawn standing on the grid point $(x, y)$. A step of type A consists of moving the pawn to one of the following grid points: $(x+a, y+a),(x+a,y-a), (x-a, y + a)$ or $(x - a, y - a)$. A step of type B consists of moving the pawn to $(x + b,y + b),(x + b,y - b), (x - b,y + b)$ or $(x - b,y - b)$. Now put a pawn on $(0, 0)$. You can make a ( nite) number of steps, alternatingly of type A and type B, starting with a step of type A. You can make an even or odd number of steps, i.e., the last step could be of either type A or type B. Determine the set of all grid points $(x,y)$ that you can reach with such a series of steps.

the 14th XMO, P4

In an $n$ by $n$ grid, each cell is filled with an integer between $1$ and $6$. The outmost cells all contain the number $1$, and any two cells that share a vertex has difference not equal to $3$. For any vertex $P$ inside the grid (not including the boundary), there are $4$ cells that have $P$ has a vertex. If these four cells have exactly three distinct numbers $i$, $j$, $k$ (two cells have the same number), and the two cells with the same number have a common side, we call $P$ an $ijk$-type vertex. Let there be $A_{ijk}$ vertices that are $ijk$-type. Prove that $A_{123}\equiv A_{246} \pmod 2$.

2023 ISI Entrance UGB, 5

There is a rectangular plot of size $1 \times n$. This has to be covered by three types of tiles - red, blue and black. The red tiles are of size $1 \times 1$, the blue tiles are of size $1 \times 1$ and the black tiles are of size $1 \times 2$. Let $t_n$ denote the number of ways this can be done. For example, clearly $t_1 = 2$ because we can have either a red or a blue tile. Also $t_2 = 5$ since we could have tiled the plot as: two red tiles, two blue tiles, a red tile on the left and a blue tile on the right, a blue tile on the left and a red tile on the right, or a single black tile. [list=a] [*]Prove that $t_{2n+1} = t_n(t_{n-1} + t_{n+1})$ for all $n > 1$. [*]Prove that $t_n = \sum_{d \ge 0} \binom{n-d}{d}2^{n-2d}$ for all $n >0$. [/list] Here, \[ \binom{m}{r} = \begin{cases} \dfrac{m!}{r!(m-r)!}, &\text{ if $0 \le r \le m$,} \\ 0, &\text{ otherwise} \end{cases}\] for integers $m,r$.

2024 SG Originals, Q1

Tags: grid
In a 2025 by 2025 grid, every cell initially contains a `1'. Every minute, we simultaneously replace the number in each cell with the sum of numbers in the cells that share an edge with it. (For example, after the first minute, the number 2 is written in each of the four corner cells.) After 2025 minutes, we colour the board in checkerboard fashion, such that the top left corner is black. Find the difference between the sum of numbers in black cells and the sum of numbers in white cells. [i]Proposed by chorn[/i]

1979 Austrian-Polish Competition, 7

Let $n$ and $m$ be fixed positive integers. The hexagon $ABCDEF$ with vertices $A = (0,0)$, $B = (n,0)$, $C = (n,m)$, $D = (n-1,m)$, $E = (n-1,1)$, $F = (0,1)$ has been partitioned into $n+m-1$ unit squares. Find the number of paths from $A$ to $C$ along grid lines, passing through every grid node at most once.

2019 Canada National Olympiad, 3

You have a $2m$ by $2n$ grid of squares coloured in the same way as a standard checkerboard. Find the total number of ways to place $mn$ counters on white squares so that each square contains at most one counter and no two counters are in diagonally adjacent white squares.

Novosibirsk Oral Geo Oly IX, 2017.1

Tags: geometry , grid , min
Petya and Vasya live in neighboring houses (see the plan in the figure). Vasya lives in the fourth entrance. It is known that Petya runs to Vasya by the shortest route (it is not necessary walking along the sides of the cells) and it does not matter from which side he runs around his house. Determine in which entrance he lives Petya . [img]https://cdn.artofproblemsolving.com/attachments/b/1/741120341a54527b179e95680aaf1c4b98ff84.png[/img]

2024 Ukraine National Mathematical Olympiad, Problem 2

For some positive integer $n$, consider the board $n\times n$. On this board you can put any rectangles with sides along the sides of the grid. What is the smallest number of such rectangles that must be placed so that all the cells of the board are covered by distinct numbers of rectangles (possibly $0$)? The rectangles are allowed to have the same sizes. [i]Proposed by Anton Trygub[/i]

Russian TST 2017, P2

What is the smallest number of nodes that can be marked in a rectangular $n \times k$ grid so that each cell contains at least two marked nodes?

2011 NZMOC Camp Selection Problems, 3

Chris and Michael play a game on a board which is a rhombus of side length $n$ (a positive integer) consisting of two equilateral triangles, each of which has been divided into equilateral triangles of side length $ 1$. Each has a single token, initially on the leftmost and rightmost squares of the board, called the “home” squares (the illustration shows the case $n = 4$). [img]https://cdn.artofproblemsolving.com/attachments/e/b/8135203c22ce77c03c144850099ad1c575edb8.png[/img] A move consists of moving your token to an adjacent triangle (two triangles are adjacent only if they share a side). To win the game, you must either capture your opponent’s token (by moving to the triangle it occupies), or move on to your opponent’s home square. Supposing that Chris moves first, which, if any, player has a winning strategy?

2022 Pan-American Girls' Math Olympiad, 1

Leticia has a $9\times 9$ board. She says that two squares are [i]friends[/i] is they share a side, if they are at opposite ends of the same row or if they are at opposite ends of the same column. Every square has $4$ friends on the board. Leticia will paint every square one of three colors: green, blue or red. In each square a number will be written based on the following rules: - If the square is green, write the number of red friends plus twice the number of blue friends. - If the square is red, write the number of blue friends plus twice the number of green friends. - If the square is blue, write the number of green friends plus twice the number of red friends. Considering that Leticia can choose the coloring of the squares on the board, find the maximum possible value she can obtain when she sums the numbers in all the squares.

2019 Greece JBMO TST, 4

Consider a $8\times 8$ chessboard where all $64$ unit squares are at the start white. Prove that, if any $12$ of the $64$ unit square get painted black, then we can find $4$ lines and $4$ rows that have all these $12$ unit squares.

2024 Baltic Way, 8

Let $a$, $b$, $n$ be positive integers such that $a + b \leq n^2$. Alice and Bob play a game on an (initially uncoloured) $n\times n$ grid as follows: - First, Alice paints $a$ cells green. - Then, Bob paints $b$ other (i.e.uncoloured) cells blue. Alice wins if she can find a path of non-blue cells starting with the bottom left cell and ending with the top right cell (where a path is a sequence of cells such that any two consecutive ones have a common side), otherwise Bob wins. Determine, in terms of $a$, $b$ and $n$, who has a winning strategy.

2017 Junior Balkan Team Selection Tests - Moldova, Problem 8

The bottom line of a $2\times 13$ rectangle is filled with $13$ tokens marked with the numbers $1, 2, ..., 13$ and located in that order. An operation is a move of a token from its cell into a free adjacent cell (two cells are called adjacent if they have a common side). What is the minimum number of operations needed to rearrange the chips in reverse order in the bottom line of the rectangle?

2023 Junior Balkan Mathematical Olympiad, 3

Tags: game , combinatorics , grid
Alice and Bob play the following game on a $100\times 100$ grid, taking turns, with Alice starting first. Initially the grid is empty. At their turn, they choose an integer from $1$ to $100^2$ that is not written yet in any of the cells and choose an empty cell, and place it in the chosen cell. When there is no empty cell left, Alice computes the sum of the numbers in each row, and her score is the maximum of these $100$ numbers. Bob computes the sum of the numbers in each column, and his score is the maximum of these $100$ numbers. Alice wins if her score is greater than Bob's score, Bob wins if his score is greater than Alice's score, otherwise no one wins. Find if one of the players has a winning strategy, and if so which player has a winning strategy. [i]Théo Lenoir, France[/i]

2019 Tournament Of Towns, 7

Peter has a wooden square stamp divided into a grid. He coated some $102$ cells of this grid with black ink. After that, he pressed this stamp $100$ times on a list of paper so that each time just those $102$ cells left a black imprint on the paper. Is it possible that after his actions the imprint on the list is a square $101 \times 101$ such that all the cells except one corner cell are black? (Alexsandr Gribalko)

1990 Mexico National Olympiad, 1

Tags: combinatorics , grid , path
How many paths are there from$ A$ to the line $BC$ if the path does not go through any vertex twice and always moves to the left? [img]https://cdn.artofproblemsolving.com/attachments/e/6/a4bc3a9decc06eaeed6f7e99cb58f7b2524471.jpg[/img]

2006 Mexico National Olympiad, 4

For which positive integers $n$ can be covered a ladder like that of the figure (but with $n$ steps instead of $4$) with $n$ squares of integer sides, not necessarily the same size, without these squares overlapping and without standing out from the edge of the figure ?