This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 136

2022 Iran Team Selection Test, 11

Tags: combinatorics , cell , grid
Consider a table with $n$ rows and $2n$ columns. we put some blocks in some of the cells. After putting blocks in the table we put a robot on a cell and it starts moving in one of the directions right, left, down or up. It can change the direction only when it reaches a block or border. Find the smallest number $m$ such that we can put $m$ blocks on the table and choose a starting point for the robot so it can visit all of the unblocked cells. (the robot can't enter the blocked cells.) Proposed by Seyed Mohammad Seyedjavadi and Alireza Tavakoli

2019 BAMO, D/2

Initially, all the squares of an $8\times 8$ grid are white. You start by choosing one of the squares and coloring it gray. After that, you may color additional squares gray one at a time, but you may only color a square gray if it has exactly $1$ or $3$ gray neighbors at that moment (where a neighbor is a square sharing an edge). For example, the configuration below (of a smaller $3\times 4$ grid) shows a situation where six squares have been colored gray so far. The squares that can be colored at the next step are marked with a dot. Is it possible to color all the squares gray? Justify your answer. [img]https://cdn.artofproblemsolving.com/attachments/1/c/d50ab269f481e4e516dace06a991e6b37f2a85.png[/img]

2017 Novosibirsk Oral Olympiad in Geometry, 4

Tags: geometry , perimeter , grid
On grid paper, mark three nodes so that in the triangle they formed, the sum of the two smallest medians equals to half-perimeter.

2011 Abels Math Contest (Norwegian MO), 4a

In a town there are $n$ avenues running from south to north. They are numbered $1$ through $n$ (from west to east). There are $n$ streets running from west to east – they are also numbered $1$ through $n$ (from south to north). If you drive through the junction of the $k$th avenue and the $\ell$th street, you have to pay $k\ell$ kroner. How much do you at least have to pay for driving from the junction of the $1$st avenue and the $1$st street to the junction of the nth avenue and the $n$th street? (You also pay for the starting and finishing junctions.)

2021-IMOC, C11

In an $m \times n$ grid, each square is either filled or not filled. For each square, its [i]value[/i] is defined as $0$ if it is filled and is defined as the number of neighbouring filled cells if it is not filled. Here, two squares are neighbouring if they share a common vertex or side. Let $f(m,n)$ be the largest total value of squares in the grid. Determine the minimal real constant $C$ such that $$\frac{f(m,n)}{mn} \le C$$holds for any positive integers $m,n$ [i]CSJL[/i]

2018 SIMO, Bonus

Simon plays a game on an $n\times n$ grid of cells. Initially, each cell is filled with an integer. Every minute, Simon picks a cell satisfying the following: [list] [*] The magnitude of the integer in the chosen cell is less than $n^{n^n}$ [*] The sum of all the integers in the neighboring cells (sharing one side with the chosen cell) is non-zero [/list] Simon then adds each integer in a neighboring cell to the chosen cell. Show that Simon will eventually not be able to make any valid moves.

2015 JBMO Shortlist, C4

Let $n\ge 1$ be a positive integer. A square of side length $n$ is divided by lines parallel to each side into $n^2$ squares of side length $1$. Find the number of parallelograms which have vertices among the vertices of the $n^2$ squares of side length $1$, with both sides smaller or equal to $2$, and which have tha area equal to $2$. (Greece)

1997 Spain Mathematical Olympiad, 2

A square of side $5$ is divided into $25$ unit squares. Let $A$ be the set of the $16$ interior points of the initial square which are vertices of the unit squares. What is the largest number of points of $A$ no three of which form an isosceles right triangle?

2004 Canada National Olympiad, 2

How many ways can $ 8$ mutually non-attacking rooks be placed on the $ 9\times9$ chessboard (shown here) so that all $ 8$ rooks are on squares of the same color? (Two rooks are said to be attacking each other if they are placed in the same row or column of the board.) [asy]unitsize(3mm); defaultpen(white); fill(scale(9)*unitsquare,black); fill(shift(1,0)*unitsquare); fill(shift(3,0)*unitsquare); fill(shift(5,0)*unitsquare); fill(shift(7,0)*unitsquare); fill(shift(0,1)*unitsquare); fill(shift(2,1)*unitsquare); fill(shift(4,1)*unitsquare); fill(shift(6,1)*unitsquare); fill(shift(8,1)*unitsquare); fill(shift(1,2)*unitsquare); fill(shift(3,2)*unitsquare); fill(shift(5,2)*unitsquare); fill(shift(7,2)*unitsquare); fill(shift(0,3)*unitsquare); fill(shift(2,3)*unitsquare); fill(shift(4,3)*unitsquare); fill(shift(6,3)*unitsquare); fill(shift(8,3)*unitsquare); fill(shift(1,4)*unitsquare); fill(shift(3,4)*unitsquare); fill(shift(5,4)*unitsquare); fill(shift(7,4)*unitsquare); fill(shift(0,5)*unitsquare); fill(shift(2,5)*unitsquare); fill(shift(4,5)*unitsquare); fill(shift(6,5)*unitsquare); fill(shift(8,5)*unitsquare); fill(shift(1,6)*unitsquare); fill(shift(3,6)*unitsquare); fill(shift(5,6)*unitsquare); fill(shift(7,6)*unitsquare); fill(shift(0,7)*unitsquare); fill(shift(2,7)*unitsquare); fill(shift(4,7)*unitsquare); fill(shift(6,7)*unitsquare); fill(shift(8,7)*unitsquare); fill(shift(1,8)*unitsquare); fill(shift(3,8)*unitsquare); fill(shift(5,8)*unitsquare); fill(shift(7,8)*unitsquare); draw(scale(9)*unitsquare,black);[/asy]

2020 Tournament Of Towns, 3

$40$ cells were marked on an infinite chessboard. Is it always possible to find a rectangle that contains $20$ marked cells? M. Evdokimov

2024 China Western Mathematical Olympiad, 4

Given positive integer $n \geq 2$. Now Cindy fills each cell of the $n*n$ grid with a positive integer not greater than $n$ such that the numbers in each row are in a non-decreasing order (from left to right) and numbers in each column is also in a non-decreasing order (from top to bottom). We call two adjacant cells form a $domino$ , if they are filled with the same number. Now Cindy wants the number of $domino$s as small as possible. Find the smallest number of $dominos$ Cindy can reach. (Here, two cells are called adjacant if they share one common side)

2021 Saint Petersburg Mathematical Olympiad, 2

The cells of a $100 \times 100$ table are colored white. In one move, it is allowed to select some $99$ cells from the same row or column and recolor each of them with the opposite color. What is the smallest number of moves needed to get a table with a chessboard coloring? [i]S. Berlov[/i]

2025 Vietnam National Olympiad, 5

Consider a $3k \times 3k$ square grid (where $k$ is a positive integer), the cells in the grid are coordinated in terms of columns and rows: Cell $(i, j)$ is at the $i^{\text{th}}$ column from left to right and the $j^{\text{th}}$ row from bottom up. We want to place $4k$ marbles in the cells of the grid, with each cell containing at most one marble, such that - Each row and each column has at least one marble - For each marble, there is another marble placed on the same row or column with that marble. a) Assume $k=1$. Determine the number of ways to place the marbles to satisfy the above conditions (Two ways to place marbles are different if there is a cell $(i, j)$ having a marble placed in one way but not in the other way). b) Assume $k \geq 1$. Find the largest positive integer $N$ such that if we mark any $N$ cells on the board, there is always a way to place $4k$ marbles satisfying the above conditions such that none of the marbles are placed on any of the marked cells.

2022 USAMO, 1

Let $a$ and $b$ be positive integers. The cells of an $(a+b+1)\times (a+b+1)$ grid are colored amber and bronze such that there are at least $a^2+ab-b$ amber cells and at least $b^2+ab-a$ bronze cells. Prove that it is possible to choose $a$ amber cells and $b$ bronze cells such that no two of the $a+b$ chosen cells lie in the same row or column.

2012 Tuymaada Olympiad, 1

Tanya and Serezha take turns putting chips in empty squares of a chessboard. Tanya starts with a chip in an arbitrary square. At every next move, Serezha must put a chip in the column where Tanya put her last chip, while Tanya must put a chip in the row where Serezha put his last chip. The player who cannot make a move loses. Which of the players has a winning strategy? [i]Proposed by A. Golovanov[/i]

2021 USEMO, 1

Let $n$ be a fixed positive integer and consider an $n\times n$ grid of real numbers. Determine the greatest possible number of cells $c$ in the grid such that the entry in $c$ is both strictly greater than the average of $c$'s column and strictly less than the average of $c$'s row. [i]Proposed by Holden Mui[/i]

2024 Israel National Olympiad (Gillis), P7

Tags: combinatorics , path , grid , rook
A rook stands in one cell of an infinite square grid. A different cell was colored blue and mines were placed in $n$ additional cells: the rook cannot stand on or pass through them. It is known that the rook can reach the blue cell in finitely many moves. Can it do so (for every $n$ and such a choice of mines, starting point, and blue cell) in at most [b](a)[/b] $1.99n+100$ moves? [b](b)[/b] $2n-2\sqrt{3n}+100$ moves? [b]Remark.[/b] In each move, the rook goes in a vertical or horizontal line.

Novosibirsk Oral Geo Oly IX, 2017.4

Tags: geometry , perimeter , grid
On grid paper, mark three nodes so that in the triangle they formed, the sum of the two smallest medians equals to half-perimeter.

2024 Turkey EGMO TST, 5

Let $p$ be a given prime number. For positive integers $n,k\geq2$ let $S_1, S_2,\dots, S_n$ be unit square sets constructed by choosing exactly one unit square from each of the columns from $p\times k$ chess board. If $|S_i \cap S_j|=1$ for all $1\leq i < j \leq n$ and for any duo of unit squares which are located at different columns there exists $S_i$ such that both of these unit squares are in $S_i$ find all duos of $(n,k)$ in terms of $p$. Note: Here we denote the number of rows by $p$ and the number of columns by $k$.

2024 Olympic Revenge, 2

Davi and George are taking a city tour through Fortaleza, with Davi initially leading. Fortaleza is organized like an $n \times n$ grid. They start in one of the grid's squares and can move from one square to another adjacent square via a street (for each pair of neighboring squares on the grid, there is a street connecting them). Some streets are dangerous. If Davi or George pass through a dangerous street, they get scared and swap who is leading the city tour. Their goal is to pass through every block of Fortaleza exactly once. However, if the city tour ends with George in command, the entire world becomes unemployed and everyone starves to death. Given that there is at least one street that is not dangerous, prove that Davi and George can achieve their goal without everyone dying of hunger.

2025 All-Russian Olympiad, 10.1

Petya and Vasya are playing a game on an initially empty \(100 \times 100\) grid, taking turns. Petya goes first. On his turn, a player writes an uppercase Russian letter in an empty cell (each cell can contain only one letter). When all cells are filled, Petya is declared the winner if there are four consecutive cells horizontally spelling the word ``ПЕТЯ'' (PETYA) from left to right, or four consecutive cells vertically spelling ``ПЕТЯ'' from top to bottom. Can Petya guarantee a win regardless of Vasya's moves?

2021 Olympic Revenge, 4

On a chessboard, Po controls a white queen and plays, in alternate turns, against an invisible black king (there are only those two pieces on the board). The king cannot move to a square where he would be in check, neither capture the queen. Every time the king makes a move, Po receives a message from beyond that tells which direction the king has moved (up, right, up-right, etc). His goal is to make the king unable to make a movement. Can Po reach his goal with at most $150$ moves, regardless the starting position of the pieces?

2007 Estonia Team Selection Test, 6

Consider a $10 \times 10$ grid. On every move, we colour $4$ unit squares that lie in the intersection of some two rows and two columns. A move is allowed if at least one of the $4$ squares is previously uncoloured. What is the largest possible number of moves that can be taken to colour the whole grid?

2009 Estonia Team Selection Test, 5

A strip consists of $n$ squares which are numerated in their order by integers $1,2,3,..., n$. In the beginning, one square is empty while each remaining square contains one piece. Whenever a square contains a piece and its some neighbouring square contains another piece while the square immediately following the neighbouring square is empty, one may raise the first piece over the second one to the empty square, removing the second piece from the strip. Find all possibilites which square can be initially empty, if it is possible to reach a state where the strip contains only one piece and a) $n = 2008$, b) $n = 2009$.

2022 Mexico National Olympiad, 4

Let $n$ be a positive integer. In an $n\times n$ garden, a fountain is to be built with $1\times 1$ platforms covering the entire garden. Ana places all the platforms at a different height. Afterwards, Beto places water sources in some of the platforms. The water in each platform can flow to other platforms sharing a side only if they have a lower height. Beto wins if he fills all platforms with water. Find the least number of water sources that Beto needs to win no matter how Ana places the platforms.