This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 250

1986 Miklós Schweitzer, 5

Prove that existence of a constant $c$ with the following property: for every composite integer $n$, there exists a group whose order is divisible by $n$ and is less than $n^c$, and that contains no element of order $n$. [P. P. Palfy]

2004 Iran MO (3rd Round), 17

Let $ p\equal{}4k\plus{}1$ be a prime. Prove that $ p$ has at least $ \frac{\phi(p\minus{}1)}2$ primitive roots.

2015 Miklos Schweitzer, 6

Let $G$ be the permutation group of a finite set $\Omega$.Consider $S\subset G$ such that $1\in S$ and for any $x,y\in \Omega$ there exists a unique element $\sigma \in S$ such that $\sigma (x)=y$.Prove that,if the elements of $S \setminus \{1\}$ are conjugate in $G$,then $G$ is $2-$transitive on $\Omega$

1993 Hungary-Israel Binational, 2

In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group. Suppose that $n \geq 1$ is such that the mapping $x \mapsto x^{n}$ from $G$ to itself is an isomorphism. Prove that for each $a \in G, a^{n-1}\in Z (G).$

1951 Miklós Schweitzer, 14

For which commutative finite groups is the product of all elements equal to the unit element?

2024 IMC, 4

Let $g$ and $h$ be two distinct elements of a group $G$, and let $n$ be a positive integer. Consider a sequence $w=(w_1,w_2,\dots)$ which is not eventually periodic and where each $w_i$ is either $g$ or $h$. Denote by $H$ the subgroup of $G$ generated by all elements of the form $w_kw_{k+1}\dotsc w_{k+n-1}$ with $k \ge 1$. Prove that $H$ does not depend on the choice of the sequence $w$ (but may depend on $n$).

1962 Miklós Schweitzer, 3

Let $ A$ and $ B$ be two Abelian groups, and define the sum of two homomorphisms $ \eta$ and $ \chi$ from $ A$ to $ B$ by \[ a( \eta\plus{}\chi)\equal{}a\eta\plus{}a\chi \;\textrm{for all}\ \;a \in A\ .\] With this addition, the set of homomorphisms from $ A$ to $ B$ forms an Abelian group $ H$. Suppose now that $ A$ is a $ p$-group ( $ p$ a prime number). Prove that in this case $ H$ becomes a topological group under the topology defined by taking the subgroups $ p^kH \;(k\equal{}1,2,...)$ as a neighborhood base of $ 0$. Prove that $ H$ is complete in this topology and that every connected component of $ H$ consists of a single element. When is $ H$ compact in this topology? [L. Fuchs]

2011 Croatia Team Selection Test, 2

There were finitely many persons at a party among whom some were friends. Among any $4$ of them there were either $3$ who were all friends among each other or $3$ who weren't friend with each other. Prove that you can separate all the people at the party in two groups in such a way that in the first group everyone is friends with each other and that all the people in the second group are not friends to anyone else in second group. (Friendship is a mutual relation).

2012 Gheorghe Vranceanu, 2

A group $ G $ of order at least $ 4 $ has the property that there exists a natural number $ n\not\in\{ 1,|G| \} $ such that $ G $ admits exactly $ \binom{|G|-1}{n-1} $ subgroups of order $ n. $ Show that $ G $ is commutative. [i]Marius Tărnăuceanu[/i]

Gheorghe Țițeica 2024, P2

a) Let $n$ be a positive integer $G$ be a a group with $|G|<\frac{4n^2}{n-\varphi(n)}$. Suppose that $Z(G)$ contains at least $\varphi(n)+1$ elements of order $n$. Prove that $G$ is abelian. b) Find a noncommutative group $G$ with $16$ elements such that $Z(G)$ contains two elements of order two. [i]Robert Rogozsan & Filip Munteanu[/i]

1991 Arnold's Trivium, 94

Decompose a $5$-dimensional real linear space into the irreducible invariant subspaces of the group generated by cyclic permutations of the basis vectors.

2009 Indonesia TST, 3

Let $ S\equal{}\{1,2,\ldots,n\}$. Let $ A$ be a subset of $ S$ such that for $ x,y\in A$, we have $ x\plus{}y\in A$ or $ x\plus{}y\minus{}n\in A$. Show that the number of elements of $ A$ divides $ n$.

2011 Laurențiu Duican, 1

Tags: group theory
Let be three positive real numbers $ x,y,z. $ Prove that there is a group of real numbers that contain the elements $ x+y/z $ and $ x+z/y $ and in which these two elements are inverses to each other. [i]D.M. Bătinețu[/i]

2008 District Olympiad, 3

Let $ A$ be a commutative unitary ring with an odd number of elements. Prove that the number of solutions of the equation $ x^2 \equal{} x$ (in $ A$) divides the number of invertible elements of $ A$.

2016 District Olympiad, 3

Let be a group $ G $ of order $ 1+p, $ where $ p $ is and odd prime. Show that if $ p $ divides the number of automorphisms of $ G, $ then $ p\equiv 3\pmod 4. $

2006 District Olympiad, 4

a) Find two sets $X,Y$ such that $X\cap Y =\emptyset$, $X\cup Y = \mathbb Q^{\star}_{+}$ and $Y = \{a\cdot b \mid a,b \in X \}$. b) Find two sets $U,V$ such that $U\cap V =\emptyset$, $U\cup V = \mathbb R$ and $V = \{x+y \mid x,y \in U \}$.

1996 IMC, 9

Let $G$ be the subgroup of $GL_{2}(\mathbb{R})$ generated by $A$ and $B$, where $$A=\begin{pmatrix} 2 &0\\ 0&1 \end{pmatrix},\; B=\begin{pmatrix} 1 &1\\ 0&1 \end{pmatrix}$$. Let $H$ consist of the matrices $\begin{pmatrix} a_{11} &a_{12}\\ a_{21}& a_{22} \end{pmatrix}$ in $G$ for which $a_{11}=a_{22}=1$. a) Show that $H$ is an abelian subgroup of $G$. b) Show that $H$ is not finitely generated.

1991 Arnold's Trivium, 92

Find the orders of the subgroups of the group of rotations of the cube, and find its normal subgroups.

2004 Unirea, 2

Tags: group theory
Consider a group $ G $ which has the property that any element of it, with the exception of the identity, has order $ p\ge 2. $ Prove that [b]a)[/b] $ p $ is prime. [b]b)[/b] $ G $ is commutative if any subset of $ G $ having $ p^2-1 $ elements contains at least $ p $ elements that commute between themselves pairwise.

1986 Traian Lălescu, 1.2

Let $ K $ be the group of Klein. Prove that: [b]a)[/b] There is an unique division ring (up to isomorphism), $ D, $ such that $ (D,+)\cong K. $ [b]b)[/b] There are no division rings $ A $ such that $ (A\setminus\{ 0\} ,+)\cong K. $

2011 Gheorghe Vranceanu, 1

[b]a)[/b] Let $ B,A $ be two subsets of a finite group $ G $ such that $ |A|+|B|>|G| . $ Show that $ G=AB. $ [b]b)[/b] Show that the cyclic group of order $ n+1 $ is the product of the sets $ \{ 0,1,2,\ldots ,m \} $ and $ \{ m,m+1,m+2,\ldots ,n\} , $ where $ 0,1,2,\ldots n $ are residues modulo $ n+1 $ and $ m\le n. $

2025 District Olympiad, P2

Let $G$ be a group and $H$ a proper subgroup. If there exist three group homomorphisms $f,g,h:G\rightarrow G$ such that $f(xy)=g(x)h(y)$ for all $x,y\in G\setminus H$, prove that: [list=a] [*] $g=h$. [*] If $G$ is noncommutative and $H=Z(G)$, then $f=g=h$.

2011 Bogdan Stan, 1

Consider the multiplicative group $ \left\{ \left.A_k:=\left(\begin{matrix} 2^k& 2^k\\2^k& 2^k\end{matrix}\right)\right| k\in\mathbb{Z} \right\} . $ [b]a)[/b] Prove that $A_xA_y=A_{x+y+1} , $ for all integers $ x,y. $ [b]b)[/b] Show that, for all integers $ t, $ the multiplicative group $ \left\{ A_{jt-1}|j\in\mathbb{Z} \right\} $ is a subgroup of $ G. $ [b]c)[/b] Determine the linear integer polynomials $ P $ for which it exists an isomorphism $ \left( G,\cdot \right)\stackrel{\eta}{\cong}\left( \mathbb{Z} ,+ \right) $ such that $ \eta\left( A_k \right) =P(k). $

1972 Putnam, B3

Tags: group theory
A group $G$ has elements $g,h$ satisfying $ghg=hg^{2}h, g^{3}=1$ and $h^n=1$ for some odd integer $n$. Prove that $h=e$, where $e$ is the identity element.

1980 Miklós Schweitzer, 5

Let $ G$ be a transitive subgroup of the symmetric group $ S_{25}$ different from $ S_{25}$ and $ A_{25}$. Prove that the order of $ G$ is not divisible by $ 23$. [i]J. Pelikan[/i]