This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 51

2005 Harvard-MIT Mathematics Tournament, 8

Let $T$ be a triangle with side lengths $26$, $51$, and $73$. Let $S$ be the set of points inside $T$ which do not lie within a distance of $5$ of any side of $T$. Find the area of $S$.

2008 AMC 12/AHSME, 18

A pyramid has a square base $ ABCD$ and vertex $ E$. The area of square $ ABCD$ is $ 196$, and the areas of $ \triangle{ABE}$ and $ \triangle{CDE}$ are $ 105$ and $ 91$, respectively. What is the volume of the pyramid? $ \textbf{(A)}\ 392 \qquad \textbf{(B)}\ 196\sqrt{6} \qquad \textbf{(C)}\ 392\sqrt2 \qquad \textbf{(D)}\ 392\sqrt3 \qquad \textbf{(E)}\ 784$

2015 AMC 12/AHSME, 20

Isosceles triangles $T$ and $T'$ are not congruent but have the same area and the same perimeter. The sides of $T$ have lengths $5$, $5$, and $8$, while those of $T'$ have lengths $a$, $a$, and $b$. Which of the following numbers is closest to $b$? $\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }8$

2011 IFYM, Sozopol, 8

The lengths of the sides of a triangle are integers, whereas the radius of its circumscribed circle is a prime number. Prove that the triangle is right-angled.

1985 IMO Longlists, 37

Prove that a triangle with angles $\alpha, \beta, \gamma$, circumradius $R$, and area $A$ satisfies \[\tan \frac{ \alpha}{2}+\tan \frac{ \beta}{2}+\tan \frac{ \gamma}{2} \leq \frac{9R^2}{4A}.\] [hide="Remark."]Remark. Can we determine [i]all[/i] of equality cases ?[/hide]

2006 Harvard-MIT Mathematics Tournament, 4

Let $ABC$ be a triangle such that $AB=2$, $CA=3$, and $BC=4$. A semicircle with its diameter on $BC$ is tangent to $AB$ and $AC$. Compute the area of the semicircle.

2000 National Olympiad First Round, 19

Let $P$ be an arbitrary point inside $\triangle ABC$ with sides $3,7,8$. What is the probability that the distance of $P$ to at least one vertices of the triangle is less than $1$? $ \textbf{(A)}\ \frac{\pi}{36}\sqrt 2 \qquad\textbf{(B)}\ \frac{\pi}{36}\sqrt 3 \qquad\textbf{(C)}\ \frac{\pi}{36} \qquad\textbf{(D)}\ \frac12 \qquad\textbf{(E)}\ \frac 34 $

1961 IMO Shortlist, 2

Let $ a$, $ b$, $ c$ be the sides of a triangle, and $ S$ its area. Prove: \[ a^{2} \plus{} b^{2} \plus{} c^{2}\geq 4S \sqrt {3} \] In what case does equality hold?

2010 Princeton University Math Competition, 8

Point $P$ is in the interior of $\triangle ABC$. The side lengths of $ABC$ are $AB = 7$, $BC = 8$, $CA = 9$. The three foots of perpendicular lines from $P$ to sides $BC$, $CA$, $AB$ are $D$, $E$, $F$ respectively. Suppose the minimal value of $\frac{BC}{PD} + \frac{CA}{PE} + \frac{AB}{PF}$ can be written as $\frac{a}{b}\sqrt{c}$, where $\gcd(a,b) = 1$ and $c$ is square free, calculate $abc$. [asy] size(120); pathpen = linewidth(0.7); pointfontpen = fontsize(10); // pointpen = black; pair B=(0,0), C=(8,0), A=IP(CR(B,7),CR(C,9)), P = (2,1.6), D=foot(P,B,C), E=foot(P,A,C), F=foot(P,A,B); D(A--B--C--cycle); D(P--D); D(P--E); D(P--F); D(MP("A",A,N)); D(MP("B",B)); D(MP("C",C)); D(MP("D",D)); D(MP("E",E,NE)); D(MP("F",F,NW)); D(MP("P",P,SE)); [/asy]

2014 Taiwan TST Round 1, 2

A triangle has side lengths $a$, $b$, $c$, and the altitudes have lengths $h_a$, $h_b$, $h_c$. Prove that \[ \left( \frac{a}{h_a} \right)^2 + \left( \frac{b}{h_b} \right)^2 + \left( \frac{c}{h_c} \right)^2 \ge 4. \]

2017 India National Olympiad, 6

Let $n\ge 1$ be an integer and consider the sum $$x=\sum_{k\ge 0} \dbinom{n}{2k} 2^{n-2k}3^k=\dbinom{n}{0}2^n+\dbinom{n}{2}2^{n-2}\cdot{}3+\dbinom{n}{4}2^{n-k}\cdot{}3^2 + \cdots{}.$$ Show that $2x-1,2x,2x+1$ form the sides of a triangle whose area and inradius are also integers.

2005 AIME Problems, 15

Triangle $ABC$ has $BC=20$. The incircle of the triangle evenly trisects the median $AD$. If the area of the triangle is $m \sqrt{n}$ where $m$ and $n$ are integers and $n$ is not divisible by the square of a prime, find $m+n$.

1959 AMC 12/AHSME, 43

The sides of a triangle are $25,39,$ and $40$. The diameter of the circumscribed circle is: $ \textbf{(A)}\ \frac{133}{3}\qquad\textbf{(B)}\ \frac{125}{3}\qquad\textbf{(C)}\ 42\qquad\textbf{(D)}\ 41\qquad\textbf{(E)}\ 40 $

1993 All-Russian Olympiad, 1

The lengths of the sides of a triangle are prime numbers of centimeters. Prove that its area cannot be an integer number of square centimeters.

1988 China National Olympiad, 4

(1) Let $a,b,c$ be positive real numbers satisfying $(a^2+b^2+c^2)^2>2(a^4+b^4+c^4)$. Prove that $a,b,c$ can be the lengths of three sides of a triangle respectively. (2) Let $a_1,a_2,\dots ,a_n$ be $n$ ($n>3$) positive real numbers satisfying $(a_1^2+a_2^2+\dots +a_n^2)^2>(n-1)(a_1^4+ a_2^4+\dots +a_n^4)$. Prove that any three of $a_1,a_2,\dots ,a_n$ can be the lengths of three sides of a triangle respectively.

1961 IMO, 2

Let $ a$, $ b$, $ c$ be the sides of a triangle, and $ S$ its area. Prove: \[ a^{2} \plus{} b^{2} \plus{} c^{2}\geq 4S \sqrt {3} \] In what case does equality hold?

2012 AMC 12/AHSME, 18

Triangle $ABC$ has $AB=27$, $AC=26$, and $BC=25$. Let $I$ denote the intersection of the internal angle bisectors of $\triangle ABC$. What is $BI$? $ \textbf{(A)}\ 15\qquad\textbf{(B)}\ 5+\sqrt{26}+3\sqrt{3}\qquad\textbf{(C)}\ 3\sqrt{26}\qquad\textbf{(D)}\ \frac{2}{3}\sqrt{546}\qquad\textbf{(E)}\ 9\sqrt{3} $

2004 Putnam, A2

For $i=1,2,$ let $T_i$ be a triangle with side length $a_i,b_i,c_i,$ and area $A_i.$ Suppose that $a_1\le a_2, b_1\le b_2, c_1\le c_2,$ and that $T_2$ is an acute triangle. Does it follow that $A_1\le A_2$?

1964 IMO Shortlist, 3

A circle is inscribed in a triangle $ABC$ with sides $a,b,c$. Tangents to the circle parallel to the sides of the triangle are contructe. Each of these tangents cuts off a triagnle from $\triangle ABC$. In each of these triangles, a circle is inscribed. Find the sum of the areas of all four inscribed circles (in terms of $a,b,c$).

2000 AMC 12/AHSME, 19

In triangle $ ABC$, $ AB \equal{} 13$, $ BC \equal{} 14$, and $ AC \equal{} 15$. Let $ D$ denote the midpoint of $ \overline{BC}$ and let $ E$ denote the intersection of $ \overline{BC}$ with the bisector of angle $ BAC$. Which of the following is closest to the area of the triangle $ ADE$? $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 2.5 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 3.5 \qquad \textbf{(E)}\ 4$

1979 IMO Longlists, 35

Given a sequence $(a_n)$, with $a_1 = 4$ and $a_{n+1} = a_n^2-2 (\forall n \in\mathbb{N})$, prove that there is a triangle with side lengths $a_{n-1}, a_n, a_{n+1},$ and that its area is equal to an integer.

2014 Harvard-MIT Mathematics Tournament, 3

$ABC$ is a triangle such that $BC = 10$, $CA = 12$. Let $M$ be the midpoint of side $AC$. Given that $BM$ is parallel to the external bisector of $\angle A$, find area of triangle $ABC$. (Lines $AB$ and $AC$ form two angles, one of which is $\angle BAC$. The external angle bisector of $\angle A$ is the line that bisects the other angle.

2014 Harvard-MIT Mathematics Tournament, 6

In quadrilateral $ABCD$, we have $AB = 5$, $BC = 6$, $CD = 5$, $DA = 4$, and $\angle ABC = 90^\circ$. Let $AC$ and $BD$ meet at $E$. Compute $\dfrac{BE}{ED}$.

1977 IMO Longlists, 58

Prove that for every triangle the following inequality holds: \[\frac{ab+bc+ca}{4S} \geq \cot \frac{\pi}{6}.\] where $a, b, c$ are lengths of the sides and $S$ is the area of the triangle.

2007 China Northern MO, 4

The inradius of triangle $ ABC$ is $ 1$ and the side lengths of $ ABC$ are all integers. Prove that triangle $ ABC$ is right-angled.