This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 200

2015 Saudi Arabia BMO TST, 2

Find the number of $6$-tuples $(a_1,a_2, a_3,a_4, a_5,a_6)$ of distinct positive integers satisfying the following two conditions: (a) $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 30$ (b) We can write $a_1,a_2, a_3,a_4, a_5,a_6$ on sides of a hexagon such that after a finite number of time choosing a vertex of the hexagon and adding $1$ to the two numbers written on two sides adjacent to the vertex, we obtain a hexagon with equal numbers on its sides. Lê Anh Vinh

2003 IMO Shortlist, 6

Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\dfrac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that all the angles of the hexagon are equal.

1993 Nordic, 2

A hexagon is inscribed in a circle of radius $r$. Two of the sides of the hexagon have length $1$, two have length $2$ and two have length $3$. Show that $r$ satisfies the equation $2r^3 - 7r - 3 = 0$.

2014 Canadian Mathematical Olympiad Qualification, 7

A bug is standing at each of the vertices of a regular hexagon $ABCDEF$. At the same time each bug picks one of the vertices of the hexagon, which it is not currently in, and immediately starts moving towards that vertex. Each bug travels in a straight line from the vertex it was in originally to the vertex it picked. All bugs travel at the same speed and are of negligible size. Once a bug arrives at a vertex it picked, it stays there. In how many ways can the bugs move to the vertices so that no two bugs are ever in the same spot at the same time?

1993 Romania Team Selection Test, 3

Suppose that each of the diagonals $AD,BE,CF$ divides the hexagon $ABCDEF$ into two parts of the same area and perimeter. Does the hexagon necessarily have a center of symmetry?

2019 Tournament Of Towns, 1

The distances from a certain point inside a regular hexagon to three of its consecutive vertices are equal to $1, 1$ and $2$, respectively. Determine the length of this hexagon's side. (Mikhail Evdokimov)

Kyiv City MO Juniors 2003+ geometry, 2020.8.51

Let $ABCDEF$ be a hexagon inscribed in a circle in which $AB = BC, CD = DE$ and $EF = FA$. Prove that the lines $AD, BE$ and $CF$ intersect at one point.

1999 Ukraine Team Selection Test, 11

Let $ABCDEF$ be a convex hexagon such that $BCEF$ is a parallelogram and $ABF$ an equilateral triangle. Given that $BC = 1, AD = 3, CD+DE = 2$, compute the area of $ABCDEF$

2016 Romanian Master of Mathematics, 5

Tags: geometry , hexagon
A convex hexagon $A_1B_1A_2B_2A_3B_3$ it is inscribed in a circumference $\Omega$ with radius $R$. The diagonals $A_1B_2$, $A_2B_3$, $A_3B_1$ are concurrent in $X$. For each $i=1,2,3$ let $\omega_i$ tangent to the segments $XA_i$ and $XB_i$ and tangent to the arc $A_iB_i$ of $\Omega$ that does not contain the other vertices of the hexagon; let $r_i$ the radius of $\omega_i$. $(a)$ Prove that $R\geq r_1+r_2+r_3$ $(b)$ If $R= r_1+r_2+r_3$, prove that the six points of tangency of the circumferences $\omega_i$ with the diagonals $A_1B_2$, $A_2B_3$, $A_3B_1$ are concyclic

1996 IMO, 5

Let $ ABCDEF$ be a convex hexagon such that $ AB$ is parallel to $ DE$, $ BC$ is parallel to $ EF$, and $ CD$ is parallel to $ FA$. Let $ R_{A},R_{C},R_{E}$ denote the circumradii of triangles $ FAB,BCD,DEF$, respectively, and let $ P$ denote the perimeter of the hexagon. Prove that \[ R_{A} \plus{} R_{C} \plus{} R_{E}\geq \frac {P}{2}. \]

2021/2022 Tournament of Towns, P5

Tags: geometry , hexagon
A parallelogram $ABCD$ is split by the diagonal $BD$ into two equal triangles. A regular hexagon is inscribed into the triangle $ABD$ so that two of its consecutive sides lie on $AB$ and $AD$ and one of its vertices lies on $BD$. Another regular hexagon is inscribed into the triangle $CBD{}$ so that two of its consecutive vertices lie on $CB$ and $CD$ and one of its sides lies on $BD$. Which of the hexagons is bigger? [i]Konstantin Knop[/i]

2019 BMT Spring, 16

Let $ABC$ be a triangle with $AB = 26$, $BC = 51$, and $CA = 73$, and let $O$ be an arbitrary point in the interior of $\vartriangle ABC$. Lines $\ell_1$, $\ell_2$, and $\ell_3$ pass through $O$ and are parallel to $\overline{AB}$, $\overline{BC}$, and $\overline{CA}$, respectively. The intersections of $\ell_1$, $\ell_2$, and $\ell_3$ and the sides of $\vartriangle ABC$ form a hexagon whose area is $A$. Compute the minimum value of $A$.

2022 China Team Selection Test, 1

In a cyclic convex hexagon $ABCDEF$, $AB$ and $DC$ intersect at $G$, $AF$ and $DE$ intersect at $H$. Let $M, N$ be the circumcenters of $BCG$ and $EFH$, respectively. Prove that the $BE$, $CF$ and $MN$ are concurrent.

1964 All Russian Mathematical Olympiad, 045

Tags: geometry , hexagon
a) Given a convex hexagon $ABCDEF$ with all the equal angles. Prove that $$|AB|-|DE| = |EF|-|BC| = |CD|-|FA|$$ b) The opposite problem: Prove that it is possible to construct a convex hexagon with equal angles of six segments $a_1,a_2,...,a_6$, whose lengths satisfy the condition $$a_1-a_4 = a_5-a_2 = a_3-a_6$$

1974 Czech and Slovak Olympiad III A, 5

Let $ABCDEF$ be a cyclic hexagon such that \[AB=BC,\quad CD=DE,\quad EF=FA.\] Show that \[[ACE]\le[BDF]\] and determine when the equality holds. ($[XYZ]$ denotes the area of the triangle $XYZ.$)

1998 Singapore Team Selection Test, 1

The lengths of the sides of a convex hexagon $ ABCDEF$ satisfy $ AB \equal{} BC$, $ CD \equal{} DE$, $ EF \equal{} FA$. Prove that: \[ \frac {BC}{BE} \plus{} \frac {DE}{DA} \plus{} \frac {FA}{FC} \geq \frac {3}{2}. \]

2022 Novosibirsk Oral Olympiad in Geometry, 3

Tags: geometry , hexagon
In a regular hexagon, segments with lengths from $1$ to $6$ were drawn as shown in the right figure (the segments go sequentially in increasing length, all the angles between them are right). Find the side length of this hexagon. [img]https://cdn.artofproblemsolving.com/attachments/3/1/82e4225b56d984e897a43ba1f403d89e5f4736.png[/img]

2016 Romanian Masters in Mathematic, 5

Tags: geometry , hexagon
A convex hexagon $A_1B_1A_2B_2A_3B_3$ it is inscribed in a circumference $\Omega$ with radius $R$. The diagonals $A_1B_2$, $A_2B_3$, $A_3B_1$ are concurrent in $X$. For each $i=1,2,3$ let $\omega_i$ tangent to the segments $XA_i$ and $XB_i$ and tangent to the arc $A_iB_i$ of $\Omega$ that does not contain the other vertices of the hexagon; let $r_i$ the radius of $\omega_i$. $(a)$ Prove that $R\geq r_1+r_2+r_3$ $(b)$ If $R= r_1+r_2+r_3$, prove that the six points of tangency of the circumferences $\omega_i$ with the diagonals $A_1B_2$, $A_2B_3$, $A_3B_1$ are concyclic

2005 Oral Moscow Geometry Olympiad, 4

Given a hexagon $ABCDEF$, in which $AB = BC, CD = DE, EF = FA$, and angles $A$ and $C$ are right. Prove that lines $FD$ and $BE$ are perpendicular. (B. Kukushkin)

Croatia MO (HMO) - geometry, 2023.3

Tags: hexagon , cyclic , geometry
A convex hexagon $ABCDEF$ is given, with each two opposite sides of different lengths and parallel ($AB \parallel DE$, $BC \parallel EF$ and $CD \parallel FA$). If $|AE| = |BD|$ and $|BF| = |CE|$, prove that the hexagon $ABCDEF$ is cyclic.

2006 Singapore Junior Math Olympiad, 5

You have a large number of congruent equilateral triangular tiles on a table and you want to fit $n$ of them together to make a convex equiangular hexagon (i.e. one whose interior angles are $120^o$) . Obviously, $n$ cannot be any positive integer. The first three feasible $n$ are $6, 10$ and $13$. Show that $12$ is not feasible but $14$ is.

2005 Federal Math Competition of S&M, Problem 2

Tags: geometry , hexagon
Suppose that in a convex hexagon, each of the three lines connecting the midpoints of two opposite sides divides the hexagon into two parts of equal area. Prove that these three lines intersect in a point.

2019 Yasinsky Geometry Olympiad, p3

Tags: geometry , area , hexagon
Let $ABCDEF$ be the regular hexagon. It is known that the area of the triangle $ACD$ is equal to $8$. Find the hexagonal area of $ABCDEF$.

May Olympiad L2 - geometry, 1997.5

Tags: geometry , hexagon , area
What are the possible areas of a hexagon with all angles equal and sides $1, 2, 3, 4, 5$, and $6$, in some order?

2015 Sharygin Geometry Olympiad, P18

Let $ABCDEF$ be a cyclic hexagon, points $K, L, M, N$ be the common points of lines $AB$ and $CD$, $AC$ and $BD$, $AF$ and $DE$, $AE$ and $DF$ respectively. Prove that if three of these points are collinear then the fourth point lies on the same line.