Found problems: 393
2017 European Mathematical Cup, 3
Let $ABC$ be a scalene triangle and let its incircle touch sides $BC$, $CA$ and $AB$ at points $D$, $E$ and
$F$ respectively. Let line $AD$ intersect this incircle at point $X$. Point $M$ is chosen on the line $FX$ so that the
quadrilateral $AFEM$ is cyclic. Let lines $AM$ and $DE$ intersect at point $L$ and let $Q$ be the midpoint of segment
$AE$. Point $T$ is given on the line $LQ$ such that the quadrilateral $ALDT$ is cyclic. Let $S$ be a point such that
the quadrilateral $TFSA$ is a parallelogram, and let $N$ be the second point of intersection of the circumcircle of
triangle $ASX$ and the line $TS$. Prove that the circumcircles of triangles $TAN$ and $LSA$ are tangent to each
other.
2009 China Team Selection Test, 1
Given that circle $ \omega$ is tangent internally to circle $ \Gamma$ at $ S.$ $ \omega$ touches the chord $ AB$ of $ \Gamma$ at $ T$. Let $ O$ be the center of $ \omega.$ Point $ P$ lies on the line $ AO.$ Show that $ PB\perp AB$ if and only if $ PS\perp TS.$
2007 Bulgaria Team Selection Test, 1
In isosceles triangle $ABC(AC=BC)$ the point $M$ is in the segment $AB$ such that $AM=2MB,$ $F$ is the midpoint of $BC$ and $H$ is the orthogonal projection of $M$ in $AF.$ Prove that $\angle BHF=\angle ABC.$
2010 ELMO Problems, 3
Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$.
[i]Amol Aggarwal.[/i]
2013 Romanian Master of Mathematics, 3
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$. The lines $AB$ and $CD$ meet at $P$, the lines $AD$ and $BC$ meet at $Q$, and the diagonals $AC$ and $BD$ meet at $R$. Let $M$ be the midpoint of the segment $PQ$, and let $K$ be the common point of the segment $MR$ and the circle $\omega$. Prove that the circumcircle of the triangle $KPQ$ and $\omega$ are tangent to one another.
2023 Sinapore MO Open, P1
In a scalene triangle $ABC$ with centroid $G$ and circumcircle $\omega$ centred at $O$, the extension of $AG$ meets $\omega$ at $M$; lines $AB$ and $CM$ intersect at $P$; and lines $AC$ and $BM$ intersect at $Q$. Suppose the circumcentre $S$ of the triangle $APQ$ lies on $\omega$ and $A, O, S$ are collinear. Prove that $\angle AGO = 90^{o}$.
2006 AIME Problems, 12
Equilateral $\triangle ABC$ is inscribed in a circle of radius 2. Extend $\overline{AB}$ through $B$ to point $D$ so that $AD=13$, and extend $\overline{AC}$ through $C$ to point $E$ so that $AE=11$. Through $D$, draw a line $l_1$ parallel to $\overline{AE}$, and through $E$, draw a line ${l}_2$ parallel to $\overline{AD}$. Let $F$ be the intersection of ${l}_1$ and ${l}_2$. Let $G$ be the point on the circle that is collinear with $A$ and $F$ and distinct from $A$. Given that the area of $\triangle CBG$ can be expressed in the form $\frac{p\sqrt{q}}{r}$, where $p$, $q$, and $r$ are positive integers, $p$ and $r$ are relatively prime, and $q$ is not divisible by the square of any prime, find $p+q+r$.
1980 IMO, 16
In a pentagon $\Pi$ in the plane, $M_1,...M_5$ are the midpoints of the consecutive sides. $Z_i$ is the centroid of the triangle $M_{i} M_{i+1} M_{i+3}$, where $i=1,2...5$ and it is understood that $M_{j\cdot 5}=M_j$ Given pentagon $Z_{1}Z_{2}Z_{3}Z_{4}Z_{5}$, determine the original pentagon $\Pi$.
2013 India IMO Training Camp, 2
In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.
2005 IMO Shortlist, 6
Let $ABC$ be a triangle, and $M$ the midpoint of its side $BC$. Let $\gamma$ be the incircle of triangle $ABC$. The median $AM$ of triangle $ABC$ intersects the incircle $\gamma$ at two points $K$ and $L$. Let the lines passing through $K$ and $L$, parallel to $BC$, intersect the incircle $\gamma$ again in two points $X$ and $Y$. Let the lines $AX$ and $AY$ intersect $BC$ again at the points $P$ and $Q$. Prove that $BP = CQ$.
2013 Romanian Masters In Mathematics, 3
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$. The lines $AB$ and $CD$ meet at $P$, the lines $AD$ and $BC$ meet at $Q$, and the diagonals $AC$ and $BD$ meet at $R$. Let $M$ be the midpoint of the segment $PQ$, and let $K$ be the common point of the segment $MR$ and the circle $\omega$. Prove that the circumcircle of the triangle $KPQ$ and $\omega$ are tangent to one another.
2002 IMO Shortlist, 2
Let $ABC$ be a triangle for which there exists an interior point $F$ such that $\angle AFB=\angle BFC=\angle CFA$. Let the lines $BF$ and $CF$ meet the sides $AC$ and $AB$ at $D$ and $E$ respectively. Prove that \[ AB+AC\geq4DE. \]
2008 Gheorghe Vranceanu, 3
If the circumradius of any three consecutive vertices of a convex polygon is at most $ 1, $ show that the discs of radius $ 1 $ centered at each vertex cover the polygon and its interior.
2011 Croatia Team Selection Test, 3
Triangle $ABC$ is given with its centroid $G$ and cicumcentre $O$ is such that $GO$ is perpendicular to $AG$. Let $A'$ be the second intersection of $AG$ with circumcircle of triangle $ABC$. Let $D$ be the intersection of lines $CA'$ and $AB$ and $E$ the intersection of lines $BA'$ and $AC$. Prove that the circumcentre of triangle $ADE$ is on the circumcircle of triangle $ABC$.
1976 AMC 12/AHSME, 24
[asy]
size(150);
pair A=(0,0),B=(1,0),C=(0,1),D=(-1,0),E=(0,.5),F=(sqrt(2)/2,.25);
draw(circle(A,1)^^D--B);
draw(circle(E,.5)^^circle( F ,.25));
label("$A$", D, W);
label("$K$", A, S);
label("$B$", B, dir(0));
label("$L$", E, N);
label("$M$",shift(-.05,.05)*F);
//Credit to Klaus-Anton for the diagram[/asy]
In the adjoining figure, circle $\mathit{K}$ has diameter $\mathit{AB}$; cirlce $\mathit{L}$ is tangent to circle $\mathit{K}$ and to $\mathit{AB}$ at the center of circle $\mathit{K}$; and circle $\mathit{M}$ tangent to circle $\mathit{K}$, to circle $\mathit{L}$ and $\mathit{AB}$. The ratio of the area of circle $\mathit{K}$ to the area of circle $\mathit{M}$ is
$\textbf{(A) }12\qquad\textbf{(B) }14\qquad\textbf{(C) }16\qquad\textbf{(D) }18\qquad \textbf{(E) }\text{not an integer}$
Kyiv City MO Seniors 2003+ geometry, 2010.10.3
A point $O$ is chosen inside the square $ABCD$. The square $A'B'C'D'$ is the image of the square $ABCD$ under the homothety with center at point $O$ and coefficient $k> 1$ (points $A', B', C', D' $ are images of points $A, B, C, D$ respectively). Prove that the sum of the areas of the quadrilaterals $A'ABB'$ and $C'CDD'$ is equal to the sum of the areas quadrilaterals $B'BCC'$ and $D'DAA'$.
Croatia MO (HMO) - geometry, 2011.3
Triangle $ABC$ is given with its centroid $G$ and cicumcentre $O$ is such that $GO$ is perpendicular to $AG$. Let $A'$ be the second intersection of $AG$ with circumcircle of triangle $ABC$. Let $D$ be the intersection of lines $CA'$ and $AB$ and $E$ the intersection of lines $BA'$ and $AC$. Prove that the circumcentre of triangle $ADE$ is on the circumcircle of triangle $ABC$.
2016 Indonesia TST, 3
Circles $\Omega $ and $\omega $ are tangent at a point $P$ ($\omega $ lies inside $\Omega $). A chord $AB$ of $\Omega $ is tangent to $\omega $ at $C;$ the line $PC$ meets $\Omega $ again at $Q.$ Chords $QR$ and $QS$ of $ \Omega $ are tangent to $\omega .$ Let $I,X,$ and $Y$ be the incenters of the triangles $APB,$ $ARB,$ and $ASB,$ respectively. Prove that $\angle PXI+\angle PYI=90^{\circ }.$
2007 Bulgaria Team Selection Test, 1
In isosceles triangle $ABC(AC=BC)$ the point $M$ is in the segment $AB$ such that $AM=2MB,$ $F$ is the midpoint of $BC$ and $H$ is the orthogonal projection of $M$ in $AF.$ Prove that $\angle BHF=\angle ABC.$
2009 Korea - Final Round, 4
$ABC$ is an acute triangle. (angle $C$ is bigger than angle $B$) Let $O$ be a center of the circle which passes $B$ and tangents to $AC$ at $C$. $O$ meets the segment $AB$ at $D$. $CO$ meets the circle $(O)$ again at $P$, a line, which passes $P$ and parallel to $AO$, meets $AC$ at $E$, and $EB$ meets the circle $(O)$ again at $L$. A perpendicular bisector of $BD$ meets $AC$ at $F$ and $LF$ meets $CD$ at $K$. Prove that two lines $EK$ and $CL$ are parallel.
1982 IMO Longlists, 10
Let $r_1, \ldots , r_n$ be the radii of $n$ spheres. Call $S_1, S_2, \ldots , S_n$ the areas of the set of points of each sphere from which one cannot see any point of any other sphere. Prove that
\[\frac{S_1}{r_1^2} + \frac{S_2}{r_2^2}+\cdots+\frac{S_n}{r_n^2} = 4 \pi.\]
2015 USA Team Selection Test, 1
Let $ABC$ be a non-isosceles triangle with incenter $I$ whose incircle is tangent to $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ at $D$, $E$, $F$, respectively. Denote by $M$ the midpoint of $\overline{BC}$. Let $Q$ be a point on the incircle such that $\angle AQD = 90^{\circ}$. Let $P$ be the point inside the triangle on line $AI$ for which $MD = MP$. Prove that either $\angle PQE = 90^{\circ}$ or $\angle PQF = 90^{\circ}$.
[i]Proposed by Evan Chen[/i]
2003 Germany Team Selection Test, 2
Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.
2006 IMO Shortlist, 2
Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic.
[i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]
2012 Sharygin Geometry Olympiad, 1
In triangle $ABC$ point $M$ is the midpoint of side $AB$, and point $D$ is the foot of altitude $CD$. Prove that $\angle A = 2\angle B$ if and only if $AC = 2 MD$.