This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 81

1999 Federal Competition For Advanced Students, Part 2, 3

Find all pairs $(x, y)$ of real numbers such that \[y^2 - [x]^2 = 19.99 \text{ and } x^2 + [y]^2 = 1999\] where $f(x)=[x]$ is the floor function.

2002 Romania National Olympiad, 1

In the Cartesian plane consider the hyperbola \[\Gamma=\{M(x,y)\in\mathbb{R}^2 \vert \frac{x^2}{4}-y^2=1\} \] and a conic $\Gamma '$, disjoint from $\Gamma$. Let $n(\Gamma ,\Gamma ')$ be the maximal number of pairs of points $(A,A')\in\Gamma\times\Gamma '$ such that $AA'\le BB'$, for any $(B,B')$ For each $p\in\{0,1,2,4\}$, find the equation of $\Gamma'$ for which $n(\Gamma ,\Gamma ')=p$. Justify the answer.

2019 Belarusian National Olympiad, 10.1

The two lines with slopes $2$ and $1/2$ pass through an arbitrary point $T$ on the axis $Oy$ and intersect the hyperbola $y=1/x$ at two points. [b]a)[/b] Prove that these four points lie on a circle. [b]b)[/b] The point $T$ runs through the entire $y$-axis. Find the locus of centers of such circles. [i](I. Gorodnin)[/i]

1998 USAMO, 6

Let $n \geq 5$ be an integer. Find the largest integer $k$ (as a function of $n$) such that there exists a convex $n$-gon $A_{1}A_{2}\dots A_{n}$ for which exactly $k$ of the quadrilaterals $A_{i}A_{i+1}A_{i+2}A_{i+3}$ have an inscribed circle. (Here $A_{n+j} = A_{j}$.)

1984 Putnam, B2

Find the minimum value of\[ (u-v)^2+\left(\sqrt{2-u^2}-\frac{9}{v}\right)^2 \]for $0<u<\sqrt{2}$ and $v>0$

2013 Today's Calculation Of Integral, 891

Given a triangle $OAB$ with the vetices $O(0,\ 0,\ 0),\ A(1,\ 0,\ 0),\ B(1,\ 1,\ 0)$ in the $xyz$ space. Let $V$ be the cone obtained by rotating the triangle around the $x$-axis. Find the volume of the solid obtained by rotating the cone $V$ around the $y$-axis.

1941 Putnam, B4

Tags: conic , ellipse , hyperbola
Given two perpendicular diameters $AB$ and $CD$ of an ellipse, we say that the diameter $A'B'$ is conjugate to $AB$ if $A'B'$ is parallel to the tangent to the ellipse at $A$. Let $A'B'$ be conjugate to $AB$ and $C'D'$ be conjugate to $CD$. Prove that the rectangular hyperbola through $A', B', C'$ and $D'$ passes through the foci of the ellipse.

2005 National High School Mathematics League, 5

Tags: ellipse , hyperbola , conic
Which kind of curve does the equation $\frac{x^2}{\sin\sqrt2-\sin\sqrt3}+\frac{y^2}{\cos\sqrt2-\cos\sqrt3}=1$ refer to? $\text{(A)}$ An ellipse, whose focal points are on $x$-axis. $\text{(B)}$ A hyperbola, whose focal points are on $x$-axis. $\text{(C)}$ An ellipse, whose focal points are on $y$-axis. $\text{(D)}$ A hyperbola, whose focal points are on $y$-axis.

2011 Albania Team Selection Test, 3

In the acute angle triangle $ABC$ the point $O$ is the center of the circumscribed circle and the lines $OA,OB,OC$ intersect sides $BC,CA,AB$ respectively in points $M,N,P$ such that $\angle NMP=90^o$. [b](a)[/b] Find the ratios $\frac{\angle AMN}{\angle NMC}$,$\frac{\angle AMP}{\angle PMB}$. [b](b)[/b] If any of the angles of the triangle $ABC$ is $60^o$, find the two other angles.

Today's calculation of integrals, 870

Consider the ellipse $E: 3x^2+y^2=3$ and the hyperbola $H: xy=\frac 34.$ (1) Find all points of intersection of $E$ and $H$. (2) Find the area of the region expressed by the system of inequality \[\left\{ \begin{array}{ll} 3x^2+y^2\leq 3 &\quad \\ xy\geq \frac 34 , &\quad \end{array} \right.\]

2008 Hungary-Israel Binational, 3

P and Q are 2 points in the area bounded by 2 rays, e and f, coming out from a point O. Describe how to construct, with a ruler and a compass only, an isosceles triangle ABC, such that his base AB is on the ray e, the point C is on the ray f, P is on AC, and Q on BC.

2007 Today's Calculation Of Integral, 211

When the parabola which has the axis parallel to $y$ -axis and passes through the origin touch to the rectangular hyperbola $xy=1$ in the first quadrant moves, prove that the area of the figure sorrounded by the parabola and the $x$-axis is constant.

2008 Moldova National Olympiad, 12.7

Triangle $ ABC$ has fixed vertices $ B$ and $ C$, so that $ BC \equal{} 2$ and $ A$ is variable. Denote by $ H$ and $ G$ the orthocenter and the centroid, respectively, of triangle $ ABC$. Let $ F\in(HG)$ so that $ \frac {HF}{FG} \equal{} 3$. Find the locus of the point $ A$ so that $ F\in BC$.

2023 Brazil Team Selection Test, 4

Let $ABC$ be an acute triangle with altitude $\overline{AH}$, and let $P$ be a variable point such that the angle bisectors $k$ and $\ell$ of $\angle PBC$ and $\angle PCB$, respectively, meet on $\overline{AH}$. Let $k$ meet $\overline{AC}$ at $E$, $\ell$ meet $\overline{AB}$ at $F$, and $\overline{EF}$ meet $\overline{AH}$ at $Q$. Prove that as $P$ varies, line $PQ$ passes through a fixed point.

2007 Moldova National Olympiad, 12.6

Show that the distance between a point on the hyperbola $xy=5$ and a point on the ellipse $x^{2}+6y^{2}=6$ is at least $\frac{9}{7}$.

2010 Putnam, B2

Given that $A,B,$ and $C$ are noncollinear points in the plane with integer coordinates such that the distances $AB,AC,$ and $BC$ are integers, what is the smallest possible value of $AB?$

2023 Indonesia TST, 3

Let $ABC$ be an acute triangle with altitude $\overline{AH}$, and let $P$ be a variable point such that the angle bisectors $k$ and $\ell$ of $\angle PBC$ and $\angle PCB$, respectively, meet on $\overline{AH}$. Let $k$ meet $\overline{AC}$ at $E$, $\ell$ meet $\overline{AB}$ at $F$, and $\overline{EF}$ meet $\overline{AH}$ at $Q$. Prove that as $P$ varies, line $PQ$ passes through a fixed point.

2009 Math Prize For Girls Problems, 1

How many ordered pairs of integers $ (x, y)$ are there such that \[ 0 < \left\vert xy \right\vert < 36?\]

2000 National High School Mathematics League, 3

$A(-1,1)$, $B,C$ are points on hyperbola $x^2-y^2=1$. If $\triangle ABC$ is a regular triangle, then the area of $\triangle ABC$ is $\text{(A)}\frac{\sqrt3}{3}\qquad\text{(B)}\frac{3\sqrt3}{2}\qquad\text{(C)}3\sqrt3\qquad\text{(D)}6\sqrt3\qquad$

1997 National High School Mathematics League, 14

Tags: conic , hyperbola
Two branches of the hyperbola $xy=1$ are $C_1,C_2$ ($C_1$ in Quadrant I, $C_2$ in Quadrant III). Three apexes of regular triangle $PQR$ are on the hyperbola. [b](a)[/b] $P,Q,R$ cannot be on the same branch. [b](b)[/b] $P(-1,-1)$ is a point on $C_2$, if $Q,R$ are on $C_1$, find their coordinates.

1941 Putnam, B1

Tags: hyperbola , conic
A particle $(x,y)$ moves so that its angular velocities about $(1,0)$ and $(-1,0)$ are equal in magnitude but opposite in sign. Prove that $$y(x^2 +y^2 +1)\; dx= x(x^2 +y^2 -1) \;dy,$$ and verify that this is the differential equation of the family of rectangular hyperbolas passing through $(1,0)$ and $(-1,0)$ and having the origin as center.

2008 Harvard-MIT Mathematics Tournament, 31

Let $ \mathcal{C}$ be the hyperbola $ y^2 \minus{} x^2 \equal{} 1$. Given a point $ P_0$ on the $ x$-axis, we construct a sequence of points $ (P_n)$ on the $ x$-axis in the following manner: let $ \ell_n$ be the line with slope $ 1$ passing passing through $ P_n$, then $ P_{n\plus{}1}$ is the orthogonal projection of the point of intersection of $ \ell_n$ and $ \mathcal C$ onto the $ x$-axis. (If $ P_n \equal{} 0$, then the sequence simply terminates.) Let $ N$ be the number of starting positions $ P_0$ on the $ x$-axis such that $ P_0 \equal{} P_{2008}$. Determine the remainder of $ N$ when divided by $ 2008$.

2007 Putnam, 2

Find the least possible area of a convex set in the plane that intersects both branches of the hyperbola $ xy\equal{}1$ and both branches of the hyperbola $ xy\equal{}\minus{}1.$ (A set $ S$ in the plane is called [i]convex[/i] if for any two points in $ S$ the line segment connecting them is contained in $ S.$)

2013 Waseda University Entrance Examination, 1

Given a parabola $C: y^2=4px\ (p>0)$ with focus $F(p,\ 0)$. Let two lines $l_1,\ l_2$ passing through $F$ intersect orthogonaly each other, $C$ intersects with $l_1$ at two points $P_1,\ P_2$ and $C$ intersects with $l_2$ at two points $Q_1,\ Q_2$. Answer the following questions. (1) Set the equation of $l_1$ as $x=ay+p$ and let the coordinates of $P_1,\ P_2$ as $(x_1,\ y_1),\ (x_2,\ y_2)$, respectively. Express $y_1+y_2,\ y_1y_2$ in terms of $a,\ p$. (2) Show that $\frac{1}{P_1P_2}+\frac{1}{Q_1Q_2}$ is constant regardless of way of taking $l_1,\ l_2$.

1987 China Team Selection Test, 1

Given a convex figure in the Cartesian plane that is symmetric with respect of both axis, we construct a rectangle $A$ inside it with maximum area (over all posible rectangles). Then we enlarge it with center in the center of the rectangle and ratio lamda such that is covers the convex figure. Find the smallest lamda such that it works for all convex figures.