This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2003 Germany Team Selection Test, 2

Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.

1997 Kurschak Competition, 2

The center of the circumcircle of $\triangle ABC$ is $O$. The incenter of the triangle is $I$, and the intouch triangle is $A_1B_1C_1$. Let $H_1$ be the orthocenter of $\triangle A_1B_1C_1$. Prove that $O$, $I$, and $H_1$ are collinear.

2018 China Girls Math Olympiad, 8

Tags: geometry , incenter
Let $I$ be the incenter of triangle $ABC$. The tangent point of $\odot I$ on $AB,AC$ is $D,E$, respectively. Let $BI \cap AC = F$, $CI \cap AB = G$, $DE \cap BI = M$, $DE \cap CI = N$, $DE \cap FG = P$, $BC \cap IP = Q$. Prove that $BC = 2MN$ is equivalent to $IQ = 2IP$.

2017 Azerbaijan Team Selection Test, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2016 India Regional Mathematical Olympiad, 1

Tags: geometry , incenter
Let $ABC$ be a right-angled triangle with $\angle B=90^{\circ}$. Let $I$ be the incenter of $ABC$. Draw a line perpendicular to $AI$ at $I$. Let it intersect the line $CB$ at $D$. Prove that $CI$ is perpendicular to $AD$ and prove that $ID=\sqrt{b(b-a)}$ where $BC=a$ and $CA=b$.

2012 Dutch IMO TST, 1

Tags: geometry , incenter
A line, which passes through the incentre $I$ of the triangle $ABC$, meets its sides $AB$ and $BC$ at the points $M$ and $N$ respectively. The triangle $BMN$ is acute. The points $K,L$ are chosen on the side $AC$ such that $\angle ILA=\angle IMB$ and $\angle KC=\angle INB$. Prove that $AM+KL+CN=AC$. [i]S. Berlov[/i]

2024 Iran MO (2nd Round), 3

Tags: geometry , incenter
In a triangle $ABC$ the incenter, the $B$-excenter and the $C$-excenter are $I, K$ and $L$, respectively. The perpendiculars at $B$ and $C$ to $BC$ intersect the lines $AC$ and $AB$ at $E$ and $F$, respectively. Prove that the circumcircles of $AEF, FIL, EIK$ concur.

2005 All-Russian Olympiad, 3

A quadrilateral $ABCD$ without parallel sides is circumscribed around a circle with centre $O$. Prove that $O$ is a point of intersection of middle lines of quadrilateral $ABCD$ (i.e. barycentre of points $A,\,B,\,C,\,D$) iff $OA\cdot OC=OB\cdot OD$.

2010 China Girls Math Olympiad, 6

In acute triangle $ABC$, $AB > AC$. Let $M$ be the midpoint of side $BC$. The exterior angle bisector of $\widehat{BAC}$ meet ray $BC$ at $P$. Point $K$ and $F$ lie on line $PA$ such that $MF \perp BC$ and $MK \perp PA$. Prove that $BC^2 = 4 PF \cdot AK$. [asy] defaultpen(fontsize(10)); size(7cm); pair A = (4.6,4), B = (0,0), C = (5,0), M = midpoint(B--C), I = incenter(A,B,C), P = extension(A, A+dir(I--A)*dir(-90), B,C), K = foot(M,A,P), F = extension(M, (M.x, M.x+1), A,P); draw(K--M--F--P--B--A--C); pair point = I; pair[] p={A,B,C,M,P,F,K}; string s = "A,B,C,M,P,F,K"; int size = p.length; real[] d; real[] mult; for(int i = 0; i<size; ++i) { d[i] = 0; mult[i] = 1;} string[] k= split(s,","); for(int i = 0;i<p.length;++i) { label("$"+k[i]+"$",p[i],mult[i]*dir(point--p[i])*dir(d[i])); }[/asy]

2011 Costa Rica - Final Round, 1

Let $ABC$ be a triangle with orthocenter $H$. Let $P,Q,R$ be the reflections of $H$ with respect to sides $BC,AC,AB$, respectively. Show that $H$ is incenter of $PQR$.

1984 Vietnam National Olympiad, 3

Consider a trihedral angle $Sxyz$ with $\angle xSz = \alpha , \angle xSy = \beta$ and $\angle ySz =\gamma$. Let $A,B,C$ denote the dihedral angles at edges $y, z, x$ respectively. $(a)$ Prove that $\frac{\sin\alpha}{\sin A}=\frac{\sin\beta}{\sin B}=\frac{\sin\gamma}{\sin C}$ $(b)$ Show that $\alpha + \beta = 180^{\circ}$ if and only if $\angle A + \angle B = 180^{\circ}.$ $(c)$ Assume that $\alpha=\beta =\gamma = 90^{\circ}$. Let $O \in Sz$ be a fixed point such that $SO = a$ and let $M,N$ be variable points on $x, y$ respectively. Prove that $\angle SOM +\angle SON +\angle MON$ is constant and find the locus of the incenter of $OSMN$.

2021 Taiwan TST Round 3, G

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2001 South africa National Olympiad, 5

Starting from a given cyclic quadrilateral $\mathcal{Q}_0$, a sequence of quadrilaterals is constructed so that $\mathcal{Q}_{k + 1}$ is the circumscribed quadrilateral of $\mathcal{Q}_k$ for $k = 0,1,\dots$. The sequence terminates when a quadrilateral is reached that is not cyclic. (The circumscribed quadrilateral of a cylic quadrilateral $ABCD$ has sides that are tangent to the circumcircle of $ABCD$ at $A$, $B$, $C$ and $D$.) Prove that the sequence always terminates, except when $\mathcal{Q}_0$ is a square.

2014 NIMO Problems, 5

Let $ABC$ be a triangle with $AB = 130$, $BC = 140$, $CA = 150$. Let $G$, $H$, $I$, $O$, $N$, $K$, $L$ be the centroid, orthocenter, incenter, circumenter, nine-point center, the symmedian point, and the de Longchamps point. Let $D$, $E$, $F$ be the feet of the altitudes of $A$, $B$, $C$ on the sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$. Let $X$, $Y$, $Z$ be the $A$, $B$, $C$ excenters and let $U$, $V$, $W$ denote the midpoints of $\overline{IX}$, $\overline{IY}$, $\overline{IZ}$ (i.e. the midpoints of the arcs of $(ABC)$.) Let $R$, $S$, $T$ denote the isogonal conjugates of the midpoints of $\overline{AD}$, $\overline{BE}$, $\overline{CF}$. Let $P$ and $Q$ denote the images of $G$ and $H$ under an inversion around the circumcircle of $ABC$ followed by a dilation at $O$ with factor $\frac 12$, and denote by $M$ the midpoint of $\overline{PQ}$. Then let $J$ be a point such that $JKLM$ is a parallelogram. Find the perimeter of the convex hull of the self-intersecting $17$-gon $LETSTRADEBITCOINS$ to the nearest integer. A diagram has been included but may not be to scale. [asy] size(6cm); import olympiad; import cse5; pair A = dir(110); pair B = dir(210); pair C = dir(330); pair D = foot(A,B,C); pair E = foot(B,C,A); pair F = foot(C,A,B); pair G = centroid(A,B,C); pair H = orthocenter(A,B,C); pair I = incenter(A,B,C); pair isocon(pair targ) { return extension(A,2*foot(targ,I,A)-targ, C,2*foot(targ,I,C)-targ); } pair O = circumcenter(A,B,C); pair K = isocon(G); pair N = midpoint(O--H); pair U = extension(O,midpoint(B--C),A,I); pair V = extension(O,midpoint(C--A),B,I); pair W = extension(O,midpoint(A--B),C,I); pair X = -I + 2*U; pair Y = -I + 2*V; pair Z = -I + 2*W; pair R = isocon(midpoint(A--D)); pair S = isocon(midpoint(B--E)); pair T = isocon(midpoint(C--F)); pair L = 2*H-O; pair P = 0.5/conj(G); pair Q = 0.5/conj(H); pair M = midpoint(P--Q); pair J = K+M-L; draw(A--B--C--cycle); void draw_cevians(pair target) { draw(A--extension(A,target,B,C)); draw(B--extension(B,target,C,A)); draw(C--extension(C,target,A,B)); } draw_cevians(H); draw_cevians(G); draw_cevians(I); draw(unitcircle); draw(circumcircle(D,E,F)); draw(O--P); draw(O--Q); draw(P--Q); draw(CP(X,foot(X,B,C))); draw(CP(Y,foot(Y,C,A))); draw(CP(Z,foot(Z,A,B))); draw(J--K--L--M); draw(X--Y--Z--cycle); draw(A--X); draw(B--Y); draw(C--Z); draw(A--foot(X,A,B)); draw(A--foot(X,A,C)); draw(B--foot(Y,B,C)); draw(B--foot(Y,B,A)); draw(C--foot(Z,C,A)); draw(C--foot(Z,C,B)); pen p = black; dot(A, p); dot(B, p); dot(C, p); dot(D, p); dot(E, p); dot(F, p); dot(G, p); dot(H, p); dot(I, p); dot(J, p); dot(K, p); dot(L, p); dot(M, p); dot(N, p); dot(O, p); dot(P, p); dot(Q, p); dot(R, p); dot(S, p); dot(T, p); dot(U, p); dot(V, p); dot(W, p); dot(X, p); dot(Y, p); dot(Z, p); [/asy]

2013 Balkan MO Shortlist, G1

In a triangle $ABC$, the excircle $\omega_a$ opposite $A$ touches $AB$ at $P$ and $AC$ at $Q$, while the excircle $\omega_b$ opposite $B$ touches $BA$ at $M$ and $BC$ at $N$. Let $K$ be the projection of $C$ onto $MN$ and let $L$ be the projection of $C$ onto $PQ$. Show that the quadrilateral $MKLP$ is cyclic. ([i]Bulgaria[/i])

2023 Grand Duchy of Lithuania, 3

The midpoints of the sides $BC$, $CA$ and $AB$ of triangle $ABC$ are $M$, $N$ and $P$ respectively . $G$ is the intersection point of the medians. The circumscribed circle around $BGP$ intersects the line $MP$ at the point $K$ (different than $P$).The circle circumscribed around $CGN$ intersects the line $MN$ at point $L$ (different than $N$). Prove that $\angle BAK = \angle CAL$.

2011 Macedonia National Olympiad, 2

Acute-angled $~$ $\triangle{ABC}$ $~$ is given. A line $~$ $l$ $~$ parallel to side $~$ $AB$ $~$ passing through vertex $~$ $C$ $~$ is drawn. Let the angle bisectors of $~$ $\angle{BAC}$ $~$ and $~$ $\angle{ABC}$ $~$ intersect the sides $~$ $BC$ and $~$ $AC$ at points $~$ $D$ $~$ and $~$ $F$, and line $~$ $l$ $~$ at points $~$ $E$ $~$ and $~$ $G$ $~$ respectively. Prove that if $~$ $\overline{DE}=\overline{GF}$ $~$ then $~$ $\overline{AC}=\overline{BC}\, .$

2008 Silk Road, 2

In a triangle $ABC$ $A_0$,$B_0$ and $C_0$ are the midpoints of the sides $BC$,$CA$ and $AB$.$A_1$,$B_1$,$C_1$ are the midpoints of the broken lines $BAC,CAB,ABC$.Show that $A_0A_1,B_0B_1,C_0C_1$ are concurrent.

2010 USA Team Selection Test, 4

Let $ABC$ be a triangle. Point $M$ and $N$ lie on sides $AC$ and $BC$ respectively such that $MN || AB$. Points $P$ and $Q$ lie on sides $AB$ and $CB$ respectively such that $PQ || AC$. The incircle of triangle $CMN$ touches segment $AC$ at $E$. The incircle of triangle $BPQ$ touches segment $AB$ at $F$. Line $EN$ and $AB$ meet at $R$, and lines $FQ$ and $AC$ meet at $S$. Given that $AE = AF$, prove that the incenter of triangle $AEF$ lies on the incircle of triangle $ARS$.

2014 Brazil National Olympiad, 1

Let $ABCD$ be a convex quadrilateral. Diagonals $AC$ and $BD$ meet at point $P$. The inradii of triangles $ABP$, $BCP$, $CDP$ and $DAP$ are equal. Prove that $ABCD$ is a rhombus.

2006 Kyiv Mathematical Festival, 4

See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Let $O$ be the circumcenter and $H$ be the intersection point of the altitudes of acute triangle $ABC.$ The straight lines $BH$ and $CH$ intersect the segments $CO$ and $BO$ at points $D$ and $E$ respectively. Prove that if triangles $ODH$ and $OEH$ are isosceles then triangle $ABC$ is isosceles too.

2021 Bulgaria National Olympiad, 6

Point $S$ is the midpoint of arc $ACB$ of the circumscribed circle $k$ around triangle $ABC$ with $AC>BC$. Let $I$ be the incenter of triangle $ABC$. Line $SI$ intersects $k$ again at point $T$. Let $D$ be the reflection of $I$ across $T$ and $M$ be the midpoint of side $AB$. Line $IM$ intersects the line through $D$, parallel to $AB$, at point $E$. Prove that $AE=BD$.

2023 Israel TST, P2

Let $ABC$ be an isosceles triangle, $AB=AC$ inscribed in a circle $\omega$. The $B$-symmedian intersects $\omega$ again at $D$. The circle through $C,D$ and tangent to $BC$ and the circle through $A,D$ and tangent to $CD$ intersect at points $D,X$. The incenter of $ABC$ is denoted $I$. Prove that $B,C,I,X$ are concyclic.

2002 Hungary-Israel Binational, 2

Let $A', B' , C'$ be the projections of a point $M$ inside a triangle $ABC$ onto the sides $BC, CA, AB$, respectively. Define $p(M ) = \frac{MA'\cdot MB'\cdot MC'}{MA \cdot MB \cdot MC}$ . Find the position of point $M$ that maximizes $p(M )$.

2016 Oral Moscow Geometry Olympiad, 1

Tags: geometry , incenter
The line passing through the center $I$ of the inscribed circle of a triangle $ABC$, perpendicular to $AI$ and intersects sides $AB$ and $AC$ at points $C'$ and $B'$, respectively. In the triangles $BC'I$ and $CB'I$, the altitudes $C'C_1$ and $B'B_1$ were drawn, respectively. Prove that the midpoint of the segment $B_1C_1$ lies on a straight line passing through point $I$ and perpendicular to $BC$.