This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

1999 Baltic Way, 12

In a triangle $ABC$ it is given that $2AB=AC+BC$. Prove that the incentre of $\triangle ABC$, the circumcentre of $\triangle ABC$, and the midpoints of $AC$ and $BC$ are concyclic.

2021 Israel TST, 3

In an inscribed quadrilateral $ABCD$, we have $BC=CD$ but $AB\neq AD$. Points $I$ and $J$ are the incenters of triangles $ABC$ and $ACD$ respectively. Point $K$ was chosen on segment $AC$ so that $IK=JK$. Points $M$ and $N$ are the incenters of triangles $AIK$ and $AJK$. Prove that the perpendicular to $CD$ at $D$ and the perpendicular to $KI$ at $I$ intersect on the circumcircle of $MAN$.

2019 Turkey Junior National Olympiad, 3

In $ABC$ triangle $I$ is incenter and incircle of $ABC$ tangents to $BC,AC,AB$ at $D,E,F$, respectively. If $AI$ intersects $DE$ and $DF$ at $P$ and $Q$, prove that the circumcenter of $DPQ$ triangle is the midpoint of $BC$.

2012 India PRMO, 14

$O$ and $I$ are the circumcentre and incentre of $\vartriangle ABC$ respectively. Suppose $O$ lies in the interior of $\vartriangle ABC$ and $I$ lies on the circle passing through $B, O$, and $C$. What is the magnitude of $\angle B AC$ in degrees?

2022 Taiwan TST Round 2, G

Let $I$, $O$, $H$, and $\Omega$ be the incenter, circumcenter, orthocenter, and the circumcircle of the triangle $ABC$, respectively. Assume that line $AI$ intersects with $\Omega$ again at point $M\neq A$, line $IH$ and $BC$ meets at point $D$, and line $MD$ intersects with $\Omega$ again at point $E\neq M$. Prove that line $OI$ is tangent to the circumcircle of triangle $IHE$. [i]Proposed by Li4 and Leo Chang.[/i]

1993 Korea - Final Round, 2

Tags: incenter , geometry
Let be given a triangle $ABC$ with $BC = a, CA = b, AB = c$. Find point $P$ in the plane for which $aAP^{2}+bBP^{2}+cCP^{2}$ is minimum, and compute this minimum.

2004 Korea - Final Round, 1

An isosceles triangle with $AB=AC$ has an inscribed circle $O$, which touches its sides $BC,CA,AB$ at $K,L,M$ respectively. The lines $OL$ and $KM$ intersect at $N$; the lines $BN$ and $CA$ intersect at $Q$. Let $P$ be the foot of the perpendicular from $A$ on $BQ$. Suppose that $BP=AP+2\cdot PQ$. Then, what values can the ratio $\frac{AB}{BC}$ assume?

2015 Iran MO (3rd round), 5

Let $ABC$ be a triangle with orthocenter $H$ and circumcenter $O$. Let $R$ be the radius of circumcircle of $\triangle ABC$. Let $A',B',C'$ be the points on $\overrightarrow{AH},\overrightarrow{BH},\overrightarrow{CH}$ respectively such that $AH.AA'=R^2,BH.BB'=R^2,CH.CC'=R^2$. Prove that $O$ is incenter of $\triangle A'B'C'$.

2011 AMC 12/AHSME, 25

Triangle $ABC$ has $\angle BAC=60^\circ$, $\angle CBA \le 90^\circ$, $BC=1$, and $AC \ge AB$. Let $H$, $I$, and $O$ be the orthocenter, incenter, and circumcenter of $\triangle ABC$, respectively. Assume that the area of the pentagon $BCOIH$ is the maximum possible. What is $\angle CBA$? $\textbf{(A)}\ 60 ^\circ \qquad \textbf{(B)}\ 72 ^\circ\qquad \textbf{(C)}\ 75 ^\circ \qquad \textbf{(D)}\ 80 ^\circ\qquad \textbf{(E)}\ 90 ^\circ$

2024 Canadian Junior Mathematical Olympiad, 3

Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.

2011 USA Team Selection Test, 7

Let $ABC$ be an acute scalene triangle inscribed in circle $\Omega$. Circle $\omega$, centered at $O$, passes through $B$ and $C$ and intersects sides $AB$ and $AC$ at $E$ and $D$, respectively. Point $P$ lies on major arc $BAC$ of $\Omega$. Prove that lines $BD, CE, OP$ are concurrent if and only if triangles $PBD$ and $PCE$ have the same incenter.

2020 Tournament Of Towns, 2

At heights $AA_0, BB_0, CC_0$ of an acute-angled non-equilateral triangle $ABC$, points $A_1, B_1, C_1$ were marked, respectively, so that $AA_1 = BB_1 = CC_1 = R$, where $R$ is the radius of the circumscribed circle of triangle $ABC$. Prove that the center of the circumscribed circle of the triangle $A_1B_1C_1$ coincides with the center of the inscribed circle of triangle $ABC$. E. Bakaev

2002 Iran MO (3rd Round), 19

Tags: incenter , geometry
$I$ is incenter of triangle $ABC$. Incircle of $ABC$ touches $AB,AC$ at $X,Y$. $XI$ intersects incircle at $M$. Let $CM\cap AB=X'$. $L$ is a point on the segment $X'C$ that $X'L=CM$. Prove that $A,L,I$ are collinear iff $AB=AC$.

2011 Iran MO (2nd Round), 3

The line $l$ intersects the extension of $AB$ in $D$ ($D$ is nearer to $B$ than $A$) and the extension of $AC$ in $E$ ($E$ is nearer to $C$ than $A$) of triangle $ABC$. Suppose that reflection of line $l$ to perpendicular bisector of side $BC$ intersects the mentioned extensions in $D'$ and $E'$ respectively. Prove that if $BD+CE=DE$, then $BD'+CE'=D'E'$.

2020-21 KVS IOQM India, 4

Tags: incenter , geometry
Let $ABC$ be an isosceles triangle with $AB=AC$ and incentre $I$. If $AI=3$ and the distance from $I$ to $BC$ is $2$, what is the square of length on $BC$?

2014 Korea Junior Math Olympiad, 7

In a parallelogram $\Box ABCD$ $(AB < BC)$ The incircle of $\triangle ABC$ meets $\overline {BC}$ and $\overline {CA}$ at $P, Q$. The incircle of $\triangle ACD$ and $\overline {CD}$ meets at $R$. Let $S$ = $PQ$ $\cap$ $AD$ $U$ = $AR$ $\cap$ $CS$ $T$, a point on $\overline {BC}$ such that $\overline {AB} = \overline {BT}$ Prove that $AT, BU, PQ$ are concurrent

2006 Romania Team Selection Test, 3

Let $\gamma$ be the incircle in the triangle $A_0A_1A_2$. For all $i\in\{0,1,2\}$ we make the following constructions (all indices are considered modulo 3): $\gamma_i$ is the circle tangent to $\gamma$ which passes through the points $A_{i+1}$ and $A_{i+2}$; $T_i$ is the point of tangency between $\gamma_i$ and $\gamma$; finally, the common tangent in $T_i$ of $\gamma_i$ and $\gamma$ intersects the line $A_{i+1}A_{i+2}$ in the point $P_i$. Prove that a) the points $P_0$, $P_1$ and $P_2$ are collinear; b) the lines $A_0T_0$, $A_1T_1$ and $A_2T_2$ are concurrent.

V Soros Olympiad 1998 - 99 (Russia), 10.4

Tags: incenter , angle , geometry
Let $M$ be the midpoint of side $BC$ of triangle $ABC$, $Q$ the point of intersection of its angle bisectors. It is known that $MQ=QA$. Find the smallest possible value of angle $\angle MQA$.

2016 Saint Petersburg Mathematical Olympiad, 5

Tags: geometry , incenter
Incircle of $\triangle ABC$ touch $AC$ at $D$. $BD$ intersect incircle at $E$. Points $F,G$ on incircle are such points, that $FE \parallel BC,GE \parallel AB$. $I_1,I_2$ are incenters of $DEF,DEG$. Prove that $I_1I_2 \perp $ bisector of $\angle ABC$

2006 Czech and Slovak Olympiad III A, 3

In a scalene triangle $ABC$,the bisectors of angle $A,B$ intersect their corresponding sides at $K,L$ respectively.$I,O,H$ denote respectively the incenter,circumcenter and orthocenter of triangle $ABC$. Prove that $A,B,K,L,O$ are concyclic iff $KL$ is the common tangent line of the circumcircles of the three triangles $ALI,BHI$ and $BKI$.

1972 IMO Longlists, 12

A circle $k = (S, r)$ is given and a hexagon $AA'BB'CC'$ inscribed in it. The lengths of sides of the hexagon satisfy $AA' = A'B, BB' = B'C, CC' = C'A$. Prove that the area $P$ of triangle $ABC$ is not greater than the area $P'$ of triangle $A'B'C'$. When does $P = P'$ hold?

2016 Cono Sur Olympiad, 5

Tags: incenter , geometry
Let $ABC$ be a triangle inscribed on a circle with center $O$. Let $D$ and $E$ be points on the sides $AB$ and $BC$,respectively, such that $AD = DE = EC$. Let $X$ be the intersection of the angle bisectors of $\angle ADE$ and $\angle DEC$. If $X \neq O$, show that, the lines $OX$ and $DE$ are perpendicular.

2018 PUMaC Geometry A, 3

Tags: incenter , geometry
Let $\triangle ABC$ satisfy $AB = 17, AC = \frac{70}{3}$ and $BC = 19$. Let $I$ be the incenter of $\triangle ABC$ and $E$ be the excenter of $\triangle ABC$ opposite $A$. (Note: this means that the circle tangent to ray $AB$ beyond $B$, ray $AC$ beyond $C$, and side $BC$ is centered at $E$.) Suppose the circle with diameter $IE$ intersects $AB$ beyond $B$ at $D$. If $BD = \frac{a}{b}$ where $a, b$ are coprime positive integers, find $a + b$.

2010 All-Russian Olympiad, 3

Quadrilateral $ABCD$ is inscribed into circle $\omega$, $AC$ intersect $BD$ in point $K$. Points $M_1$, $M_2$, $M_3$, $M_4$-midpoints of arcs $AB$, $BC$, $CD$, and $DA$ respectively. Points $I_1$, $I_2$, $I_3$, $I_4$-incenters of triangles $ABK$, $BCK$, $CDK$, and $DAK$ respectively. Prove that lines $M_1I_1$, $M_2I_2$, $M_3I_3$, and $M_4I_4$ all intersect in one point.

2008 Kazakhstan National Olympiad, 2

Let $ \triangle ABC$ be a triangle and let $ K$ be some point on the side $ AB$, so that the tangent line from $ K$ to the incircle of $ \triangle ABC$ intersects the ray $ AC$ at $ L$. Assume that $ \omega$ is tangent to sides $ AB$ and $ AC$, and to the circumcircle of $ \triangle AKL$. Prove that $ \omega$ is tangent to the circumcircle of $ \triangle ABC$ as well.