This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2010 Today's Calculation Of Integral, 662

In $xyz$ space, let $A$ be the solid generated by a rotation of the figure, enclosed by the curve $y=2-2x^2$ and the $x$-axis about the $y$-axis. (1) When the solid is cut by the plane $x=a\ (|a|\leq 1)$, find the inequality which expresses the figure of the cross-section. (2) Denote by $L$ the distance between the point $(a,\ 0,\ 0)$ and the point on the perimeter of the cross-section found in (1), find the maximum value of $L$. (3) Find the volume of the solid by a rotation of the solid $A$ about the $x$-axis. [i]1987 Sophia University entrance exam/Science and Technology[/i]

2018 Macedonia National Olympiad, Problem 4

Let $t_{k} = a_{1}^k + a_{2}^k +...+a_{n}^k$, where $a_{1}$, $a_{2}$, ... $a_{n}$ are positive real numbers and $k \in \mathbb{N}$. Prove that $$\frac{t_{5}^2 t_1^{6}}{15} - \frac{t_{4}^4 t_{2}^2 t_{1}^2}{6} + \frac{t_{2}^3 t_{4}^5}{10} \geq 0 $$ [i]Proposed by Daniel Velinov[/i]

1978 IMO Longlists, 44

In $ABC$ with $\angle C = 60^{\circ}$, prove that \[\frac{c}{a} + \frac{c}{b} \ge2.\]

2002 Moldova National Olympiad, 12.5

Let $0 \le a \le b \le c \le 3$ Prove : $(a-b)(a^2-9)+(a-c)(b^2-9)+(b-c)(c^2-9) \le 36$

2002 Federal Math Competition of S&M, Problem 1

Determine all real numbers $x$ such that $$\frac{2002\lfloor x\rfloor}{\lfloor-x\rfloor+x}>\frac{\lfloor2x\rfloor}{x-\lfloor1+x\rfloor}.$$

1981 Poland - Second Round, 1

Prove that for any real numbers $ x_1, x_2, \ldots, x_{1981} $, $ y_1, y_2, \ldots, y_{1981} $ such that $ \sum_{j=1}^{1981} x_j = 0 $, $ \sum_{j=1}^{1981} y_j = 0 $ the inequality occurs $$ \sqrt{\sum_{j=1}^{1981} (x_j^2+y_j^2)} \leq \frac{1}{\sqrt{2}} \sum_{j=1}^{1981} \sqrt{x_j^2+y_j^2}.$$

2012 IMO Shortlist, A3

Let $n\ge 3$ be an integer, and let $a_2,a_3,\ldots ,a_n$ be positive real numbers such that $a_{2}a_{3}\cdots a_{n}=1$. Prove that \[(1 + a_2)^2 (1 + a_3)^3 \dotsm (1 + a_n)^n > n^n.\] [i]Proposed by Angelo Di Pasquale, Australia[/i]

2015 Czech-Polish-Slovak Match, 3

Real numbers $x,y,z$ satisfy $$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+x+y+z=0$$ and none of them lies in the open interval $(-1,1)$. Find the maximum value of $x+y+z$. [i]Proposed by Jaromír Šimša[/i]

2015 Saudi Arabia JBMO TST, 4

Let $a,b$ and $c$ be positive numbers with $a^2+b^2+c^2=3$. Prove that $a+b+c\ge 3\sqrt[5]{abc}$.

2021 Israel TST, 2

Tags: inequalities
Suppose $x,y,z\in \mathbb R^+$. Prove that \[\frac {x}{\sqrt{yz+4xy+4xz}}+\frac {y}{\sqrt{zx+4yz+4yx}}+\frac {z}{\sqrt{xy+4zx+4zy}}\geq 1\].

1974 Poland - Second Round, 2

Prove that for every $ n = 2, 3, \ldots $ and any real numbers $ t_1, t_2, \ldots, t_n $, $ s_1, s_2, \ldots, s_n $, if $$ \sum_{i=1}^n t_i = 0, \text{ to } \sum_{i=1}^n\sum_{j=1}^n t_it_j |s_i-s_j| \leq 0.$$

2006 Germany Team Selection Test, 3

Let $n$ be a positive integer, and let $b_{1}$, $b_{2}$, ..., $b_{n}$ be $n$ positive reals. Set $a_{1}=\frac{b_{1}}{b_{1}+b_{2}+...+b_{n}}$ and $a_{k}=\frac{b_{1}+b_{2}+...+b_{k}}{b_{1}+b_{2}+...+b_{k-1}}$ for every $k>1$. Prove the inequality $a_{1}+a_{2}+...+a_{n}\leq\frac{1}{a_{1}}+\frac{1}{a_{2}}+...+\frac{1}{a_{n}}$.

2002 Moldova National Olympiad, 3

Let $ a,b> 0$ such that $ a\ne b$. Prove that: $ \sqrt {ab} < \dfrac{a \minus{} b}{\ln a \minus{} \ln b} < \dfrac{a \plus{} b}{2}$

1959 Kurschak Competition, 3

What is the largest possible value of $|a_1 - 1| + |a_2-2|+...+ |a_n- n|$ where $a_1, a_2,..., a_n$ is a permutation of $1,2,..., n$?

2004 France Team Selection Test, 1

Let $n$ be a positive integer, and $a_1,...,a_n, b_1,..., b_n$ be $2n$ positive real numbers such that $a_1 + ... + a_n = b_1 + ... + b_n = 1$. Find the minimal value of $ \frac {a_1^2} {a_1 + b_1} + \frac {a_2^2} {a_2 + b_2} + ...+ \frac {a_n^2} {a_n + b_n}$.

2011 USA TSTST, 7

Let $ABC$ be a triangle. Its excircles touch sides $BC, CA, AB$ at $D, E, F$, respectively. Prove that the perimeter of triangle $ABC$ is at most twice that of triangle $DEF$.

1999 Austrian-Polish Competition, 2

Tags: inequalities
Find the best possible $k,k'$ such that \[k<\frac{v}{v+w}+\frac{w}{w+x}+\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+v}<k'\] for all positive reals $v,w,x,y,z$.

2011 Postal Coaching, 5

Let $P$ be a point inside a triangle $ABC$ such that \[\angle P AB = \angle P BC = \angle P CA\] Suppose $AP, BP, CP$ meet the circumcircles of triangles $P BC, P CA, P AB$ at $X, Y, Z$ respectively $(\neq P)$ . Prove that \[[XBC] + [Y CA] + [ZAB] \ge 3[ABC]\]

2005 Irish Math Olympiad, 5

Let $ a,b,c$ be nonnegative real numbers. Prove that: $ \frac{1}{3}((a\minus{}b)^2\plus{}(b\minus{}c)^2\plus{}(c\minus{}a)^2) \le a^2\plus{}b^2\plus{}c^2\minus{}3 \sqrt[3]{a^2 b^2 c^2 } \le (a\minus{}b)^2\plus{}(b\minus{}c)^2\plus{}(c\minus{}a)^2.$

2005 Bosnia and Herzegovina Junior BMO TST, 1

Tags: min , max , algebra , inequalities
Non-negative real numbers $x, y, z$ satisfy the following relations: $3x + 5y + 7z = 10$ and $x + 2y + 5z = 6$. Find the minimum and maximum of $w = 2x - 3y + 4z$.

2013 Bogdan Stan, 2

Let $ \left( a_n \right) ,\left( b_n \right) $ be two sequences of real numbers from the interval $ (-1,1) $ having the property that $$ \max\left( \left| a_{n+1} -a_n \right| ,\left| b_{n+1} -b_n \right| \right) \le\frac{1}{(n+4)(n+5)} , $$ for any natural number. Prove that $ \left| a_nb_n -a_1b_1 \right|\le 1/2, $ for any natural number $ n. $ [i]Cristinel Mortici[/i]

2016 Thailand Mathematical Olympiad, 2

Let $M$ be a positive integer, and $A = \{1, 2,... , M + 1\}$. Show that if $f$ is a bijection from $A$ to $A$ then $\sum_{n=1}^{M} \frac{1}{f(n) + f(n + 1)} > \frac{M}{M + 3}$

2010 Contests, 2

$a,b,c$ are positive real numbers. prove the following inequality: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{(a+b+c)^2}\ge \frac{7}{25}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a+b+c})^2$ (20 points)

2002 AMC 12/AHSME, 24

A convex quadrilateral $ ABCD$ with area $ 2002$ contains a point $ P$ in its interior such that $ PA \equal{} 24$, $ PB \equal{} 32$, $ PC \equal{} 28$, and $ PD \equal{} 45$. FInd the perimeter of $ ABCD$. $ \textbf{(A)}\ 4\sqrt {2002}\qquad \textbf{(B)}\ 2\sqrt {8465}\qquad \textbf{(C)}\ 2\left(48 \plus{} \sqrt {2002}\right)$ $ \textbf{(D)}\ 2\sqrt {8633}\qquad \textbf{(E)}\ 4\left(36 \plus{} \sqrt {113}\right)$

2011 Balkan MO, 4

Let $ABCDEF$ be a convex hexagon of area $1$, whose opposite sides are parallel. The lines $AB$, $CD$ and $EF$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $BC$, $DE$ and $FA$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3/2$.