This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2016 Silk Road, 1

Let $a,b$ and $c$ be real numbers such that $| (a-b) (b-c) (c-a) | = 1$. Find the smallest value of the expression $| a | + | b | + | c |$. (K.Satylhanov )

1988 Greece National Olympiad, 1

Given $x,y,a\in \mathbb{R}$ , $x+y=2a-4 $ and $xy=a^2-3a+5$. What is the minimum value of $x^2+y^2$?

2020 Latvia Baltic Way TST, 1

Prove that for positive reals $a,b,c$ satisfying $a+b+c=3$ the following inequality holds: $$ \frac{a}{1+2b^3}+\frac{b}{1+2c^3}+\frac{c}{1+2a^3} \ge 1 $$

2023 CMIMC Team, 2

Real numbers $x$ and $y$ satisfy \begin{align*} x^2 + y^2 &= 2023 \\ (x-2)(y-2) &= 3. \end{align*} Find the largest possible value of $|x-y|$. [i]Proposed by Howard Halim[/i]

2022 Korea National Olympiad, 4

For positive integers $m, n$ ($m>n$), $a_{n+1}, a_{n+2}, ..., a_m$ are non-negative integers that satisfy the following inequality. $$ 2> \frac{a_{n+1}}{n+1} \ge \frac{a_{n+2}}{n+2} \ge \cdots \ge \frac{a_m}{m}$$ Find the number of pair $(a_{n+1}, a_{n+2}, \cdots, a_m)$.

2006 Mathematics for Its Sake, 3

Let be two complex numbers $ a,b $ chosen such that $ |a+b|\ge 2 $ and $ |a+b|\ge 1+|ab|. $ Prove that $$ \left| a^{n+1} +b^{n+1} \right|\ge \left| a^{n} +b^{n} \right| , $$ for any natural number $ n. $ [i]Alin Pop[/i]

2005 Romania Team Selection Test, 2

Let $ABC$ be a triangle, and let $D$, $E$, $F$ be 3 points on the sides $BC$, $CA$ and $AB$ respectively, such that the inradii of the triangles $AEF$, $BDF$ and $CDE$ are equal with half of the inradius of the triangle $ABC$. Prove that $D$, $E$, $F$ are the midpoints of the sides of the triangle $ABC$.

2019 Polish Junior MO Second Round, 1.

Let $x$, $y$ be real numbers, such that $x^2 + x \leq y$. Prove that $y^2 + y \geq x$.

PEN P Problems, 6

Show that every integer greater than $1$ can be written as a sum of two square-free integers.

2003 Indonesia MO, 5

Tags: inequalities
For any real numbers $a,b,c$, prove that \[ 5a^2 + 5b^2 + 5c^2 \ge 4ab + 4ac + 4bc \] and determine when equality occurs.

2005 France Team Selection Test, 2

Two right angled triangles are given, such that the incircle of the first one is equal to the circumcircle of the second one. Let $S$ (respectively $S'$) be the area of the first triangle (respectively of the second triangle). Prove that $\frac{S}{S'}\geq 3+2\sqrt{2}$.

2004 IMO Shortlist, 5

Tags: inequalities
If $a$, $b$ ,$c$ are three positive real numbers such that $ab+bc+ca = 1$, prove that \[ \sqrt[3]{ \frac{1}{a} + 6b} + \sqrt[3]{\frac{1}{b} + 6c} + \sqrt[3]{\frac{1}{c} + 6a } \leq \frac{1}{abc}. \]

2006 India National Olympiad, 5

In a cyclic quadrilateral $ABCD$, $AB=a$, $BC=b$, $CD=c$, $\angle ABC = 120^\circ$ and $\angle ABD = 30^\circ$. Prove that (1) $c \ge a + b$; (2) $|\sqrt{c + a} - \sqrt{c + b} | = \sqrt{c - a - b}$.

the 13th XMO, P9

Find the maximum value of $\lambda ,$ such that for $\forall x,y\in\mathbb R_+$ satisfying $2x-y=2x^3+y^3,x^2+\lambda y^2\leqslant 1.$

2002 Vietnam National Olympiad, 2

Determine for which $ n$ positive integer the equation: $ a \plus{} b \plus{} c \plus{} d \equal{} n \sqrt {abcd}$ has positive integer solutions.

2010 Contests, 3

Tags: inequalities
Find the largest constant $K>0$ such that for any $0\le k\le K$ and non-negative reals $a,b,c$ satisfying $a^2+b^2+c^2+kabc=k+3$ we have $a+b+c\le 3$. (Dan Schwarz)

2013 Federal Competition For Advanced Students, Part 2, 1

For each pair $(a,b)$ of positive integers, determine all non-negative integers $n$ such that \[b+\left\lfloor{\frac{n}{a}}\right\rfloor=\left\lceil{\frac{n+b}{a}}\right\rceil.\]

2003 Greece National Olympiad, 1

If $a, b, c, d$ are positive numbers satisfying $a^3 + b^3 +3ab = c + d = 1,$ prove that \[\left(a+\frac{1}{a}\right)^3+\left(b+\frac{1}{b}\right)^3+\left(c+\frac{1}{c}\right)^3+\left(d+\frac{1}{d}\right)^3\geq 40.\]

1968 Miklós Schweitzer, 2

Let $ a_1,a_2,...,a_n$ be nonnegative real numbers. Prove that \[ ( \sum_{i=1}^na_i)( \sum_{i=1}^na_i^{n-1}) \leq n \prod_{i=1}^na_i+ (n-1) ( \sum_{i=1}^na_i^n).\] [i]J. Suranyi[/i]

1996 China Team Selection Test, 2

Let $\alpha_1, \alpha_2, \dots, \alpha_n$, and $\beta_1, \beta_2, \ldots, \beta_n$, where $n \geq 4$, be 2 sets of real numbers such that \[\sum_{i=1}^{n} \alpha_i^2 < 1 \qquad \text{and} \qquad \sum_{i=1}^{n} \beta_i^2 < 1.\] Define \begin{align*} A^2 &= 1 - \sum_{i=1}^{n} \alpha_i^2,\\ B^2 &= 1 - \sum_{i=1}^{n} \beta_i^2,\\ W &= \frac{1}{2} (1 - \sum_{i=1}^{n} \alpha_i \beta_i)^2. \end{align*} Find all real numbers $\lambda$ such that the polynomial \[x^n + \lambda (x^{n-1} + \cdots + x^3 + Wx^2 + ABx + 1) = 0,\] only has real roots.

2010 Postal Coaching, 5

For any positive real numbers $a, b, c$, prove that \[\sum_{cyclic} \frac{(b + c)(a^4 - b^2 c^2 )}{ab + 2bc + ca} \ge 0\]

2015 Kazakhstan National Olympiad, 1

Tags: inequalities
Prove that $$\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{(n+1)^2} < n \cdot \left(1-\frac{1}{\sqrt[n]{2}}\right).$$

1995 IMO Shortlist, 1

Let $ a$, $ b$, $ c$ be positive real numbers such that $ abc \equal{} 1$. Prove that \[ \frac {1}{a^{3}\left(b \plus{} c\right)} \plus{} \frac {1}{b^{3}\left(c \plus{} a\right)} \plus{} \frac {1}{c^{3}\left(a \plus{} b\right)}\geq \frac {3}{2}. \]

2010 Middle European Mathematical Olympiad, 6

For each integer $n\geqslant2$, determine the largest real constant $C_n$ such that for all positive real numbers $a_1, \ldots, a_n$ we have \[\frac{a_1^2+\ldots+a_n^2}{n}\geqslant\left(\frac{a_1+\ldots+a_n}{n}\right)^2+C_n\cdot(a_1-a_n)^2\mbox{.}\] [i](4th Middle European Mathematical Olympiad, Team Competition, Problem 2)[/i]

2019 Saudi Arabia JBMO TST, 2

Let $a, b, c$ be positive reals so that $a^2+b^2+c^2=1$. Find the minimum value of $S=1/a^2+1/b^2+1/c^2-2(a^3+b^3+c^3)/abc$