This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2001 Italy TST, 2

Let $0\le a\le b\le c$ be real numbers. Prove that \[(a+3b)(b+4c)(c+2a)\ge 60abc \]

2012 India IMO Training Camp, 2

Let $P(z)=a_nz^n+a_{n-1}z^{n-1}+\ldots+a_mz^m$ be a polynomial with complex coefficients such that $a_m\neq 0, a_n\neq 0$ and $n>m$. Prove that \[\text{max}_{|z|=1}\{|P(z)|\}\ge\sqrt{2|a_ma_n|+\sum_{k=m}^{n} |a_k|^2}\]

Mathematical Minds 2024, P4

Tags: inequalities
Let $a$, $b$, $c$ be positive real numbers such that $a+b+c=3$. Prove that $$\sqrt[3]{\frac{a^3+b^3}{2}}+\sqrt[3]{\frac{b^3+c^3}{2}}+\sqrt[3]{\frac{c^3+a^3}{2}}\leqslant a^2+b^2+c^2.$$ [i]Proposed by Andrei Vila[/i]

2021 Kyiv City MO Round 1, 10.1

Tags: inequalities
Prove the following inequality: $$\sin{1} + \sin{3} + \ldots + \sin{2021} > \frac{2\sin{1011}^2}{\sqrt{3}}$$ [i]Proposed by Oleksii Masalitin[/i]

2020 USOMO, 6

Tags: inequalities
Let $n \ge 2$ be an integer. Let $x_1 \ge x_2 \ge ... \ge x_n$ and $y_1 \ge y_2 \ge ... \ge y_n$ be $2n$ real numbers such that $$0 = x_1 + x_2 + ... + x_n = y_1 + y_2 + ... + y_n $$ $$\text{and} \hspace{2mm} 1 =x_1^2 + x_2^2 + ... + x_n^2 = y_1^2 + y_2^2 + ... + y_n^2.$$ Prove that $$\sum_{i = 1}^n (x_iy_i - x_iy_{n + 1 - i}) \ge \frac{2}{\sqrt{n-1}}.$$ [i]Proposed by David Speyer and Kiran Kedlaya[/i]

2016 Tuymaada Olympiad, 4

Tags: inequalities
Non-negative numbers $a$, $b$, $c$ satisfy $a^2+b^2+c^2\geq 3$. Prove the inequality $$ (a+b+c)^3\geq 9(ab+bc+ca). $$

2015 Purple Comet Problems, 7

How many non-congruent isosceles triangles (including equilateral triangles) have positive integer side lengths and perimeter less than 20?

1983 IMO Longlists, 16

Suppose that ${x_1, x_2, \dots , x_n}$ are positive integers for which $x_1 + x_2 + \cdots+ x_n = 2(n + 1)$. Show that there exists an integer $r$ with $0 \leq r \leq n - 1$ for which the following $n - 1$ inequalities hold: \[x_{r+1} + \cdots + x_{r+i} \leq 2i+ 1, \qquad \qquad \forall i, 1 \leq i \leq n - r; \] \[x_{r+1} + \cdots + x_n + x_1 + \cdots+ x_i \leq 2(n - r + i) + 1, \qquad \qquad \forall i, 1 \leq i \leq r - 1.\] Prove that if all the inequalities are strict, then $r$ is unique and that otherwise there are exactly two such $r.$

2010 Contests, 3

What is the biggest shadow that a cube of side length $1$ can have, with the sun at its peak? Note: "The biggest shadow of a figure with the sun at its peak" is understood to be the biggest possible area of the orthogonal projection of the figure on a plane.

2011 National Olympiad First Round, 15

Tags: inequalities
For which pair $(a,b)$, there is no positive real pair $(x,y)$ satisfying $x+2y < a$ and $xy > b$ ? $\textbf{(A)}\ \left (\frac{15}{7}, \frac{4}{7}\right ) \qquad\textbf{(B)}\ \left (\frac{18}{11}, \frac{1}{3}\right ) \qquad\textbf{(C)}\ \left (\frac{5}{7}, \frac{1}{16}\right ) \qquad\textbf{(D)}\ \left (\frac{6}{7}, \frac{1}{11}\right ) \qquad\textbf{(E)}\ \text{None}$

2013 Sharygin Geometry Olympiad, 2

Let $ABCD$ is a tangential quadrilateral such that $AB=CD>BC$. $AC$ meets $BD$ at $L$. Prove that $\widehat{ALB}$ is acute. [hide]According to the jury, they want to propose a more generalized problem is to prove $(AB-CD)^2 < (AD-BC)^2$, but this problem has appeared some time ago[/hide]

2007 Romania National Olympiad, 3

a) In a triangle $ MNP$, the lenghts of the sides are less than $ 2$. Prove that the lenght of the altitude corresponding to the side $ MN$ is less than $ \sqrt {4 \minus{} \frac {MN^2}{4}}$. b) In a tetrahedron $ ABCD$, at least $ 5$ edges have their lenghts less than $ 2$.Prove that the volume of the tetrahedron is less than $ 1$.

2019 Switzerland Team Selection Test, 11

Tags: inequalities
Let $n $ be a positive integer. Determine whether there exists a positive real number $\epsilon >0$ (depending on $n$) such that for all positive real numbers $x_1,x_2,\dots ,x_n$, the inequality $$\sqrt[n]{x_1x_2\dots x_n}\leq (1-\epsilon)\frac{x_1+x_2+\dots+x_n}{n}+\epsilon \frac{n}{\frac{1}{x_1}+\frac{1}{x_2}+\dots +\frac{1}{x_n}},$$ holds.

2013 Greece Team Selection Test, 3

Find the largest possible value of $M$ for which $\frac{x}{1+\frac{yz}{x}}+\frac{y}{1+\frac{zx}{y}}+\frac{z}{1+\frac{xy}{z}}\geq M$ for all $x,y,z>0$ with $xy+yz+zx=1$

2008 IberoAmerican Olympiad For University Students, 7

Let $A$ be an abelian additive group such that all nonzero elements have infinite order and for each prime number $p$ we have the inequality $|A/pA|\leq p$, where $pA = \{pa |a \in A\}$, $pa = a+a+\cdots+a$ (where the sum has $p$ summands) and $|A/pA|$ is the order of the quotient group $A/pA$ (the index of the subgroup $pA$). Prove that each subgroup of $A$ of finite index is isomorphic to $A$.

1988 IMO Longlists, 22

In a triangle $ ABC,$ choose any points $ K \in BC, L \in AC, M \in AB, N \in LM, R \in MK$ and $ F \in KL.$ If $ E_1, E_2, E_3, E_4, E_5, E_6$ and $ E$ denote the areas of the triangles $ AMR, CKR, BKF, ALF, BNM, CLN$ and $ ABC$ respectively, show that \[ E \geq 8 \cdot \sqrt [6]{E_1 E_2 E_3 E_4 E_5 E_6}. \]

2016 India IMO Training Camp, 3

Tags: inequalities
Let a,b,c,d be real numbers satisfying $|a|,|b|,|c|,|d|>1$ and $abc+abd+acd+bcd+a+b+c+d=0$. Prove that $\frac {1} {a-1}+\frac {1} {b-1}+ \frac {1} {c-1}+ \frac {1} {d-1} >0$

2014 Thailand TSTST, 1

Tags: inequalities
Let $x, y, z$ be positive real numbers. Prove that $$4(x^2+y^2+z^2)\geq3(xy+yz+zx).$$

2010 China National Olympiad, 3

Given complex numbers $a,b,c$, we have that $|az^2 + bz +c| \leq 1$ holds true for any complex number $z, |z| \leq 1$. Find the maximum value of $|bc|$.

2010 Contests, 2

Prove that for any real number $ x$ the following inequality is true: $ \max\{|\sin x|, |\sin(x\plus{}2010)|\}>\dfrac1{\sqrt{17}}$

PEN G Problems, 16

For each integer $n \ge 1$, prove that there is a polynomial $P_{n}(x)$ with rational coefficients such that $x^{4n}(1-x)^{4n}=(1+x)^{2}P_{n}(x)+(-1)^{n}4^{n}$. Define the rational number $a_{n}$ by \[a_{n}= \frac{(-1)^{n-1}}{4^{n-1}}\int_{0}^{1}P_{n}(x) \; dx,\; n=1,2, \cdots.\] Prove that $a_{n}$ satisfies the inequality \[\left\vert \pi-a_{n}\right\vert < \frac{1}{4^{5n-1}}, \; n=1,2, \cdots.\]

2000 All-Russian Olympiad Regional Round, 10.5

Is there a function $f(x)$ defined for all $x \in R$ and for all $x, y \in R $ satisfying the inequality $$|f(x + y) + \sin x + \sin y| < 2?$$

2006 District Olympiad, 1

Let $f_1,f_2,\ldots,f_n : [0,1]\to (0,\infty)$ be $n$ continuous functions, $n\geq 1$, and let $\sigma$ be a permutation of the set $\{1,2,\ldots, n\}$. Prove that \[ \prod^n_{i=1} \int^1_0 \frac{ f_i^2(x) }{ f_{\sigma(i)}(x) } dx \geq \prod^n_{i=1} \int^1_0 f_i(x) dx. \]

2021 Serbia National Math Olympiad, 3

In a triangle $ABC$, let $AB$ be the shortest side. Points $X$ and $Y$ are given on the circumcircle of $\triangle ABC$ such that $CX=AX+BX$ and $CY=AY+BY$. Prove that $\measuredangle XCY<60^{o}$.

2008 Serbia National Math Olympiad, 3

Let $ a$, $ b$, $ c$ be positive real numbers such that $ a \plus{} b \plus{} c \equal{} 1$. Prove inequality: \[ \frac{1}{bc \plus{} a \plus{} \frac{1}{a}} \plus{} \frac{1}{ac \plus{} b \plus{} \frac{1}{b}} \plus{} \frac{1}{ab \plus{} c \plus{} \frac{1}{c}} \leqslant \frac{27}{31}.\]