This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1985 Yugoslav Team Selection Test, Problem 3

1) proove for positive $a, b, c, d$ $ \frac{a}{b+c} + \frac{b}{c+d} + \frac{c}{d+a} + \frac{d}{a+b} \ge 2$

1994 Poland - First Round, 5

Tags: inequalities
Given positive numbers $a,b$. Prove that the following sentences are equivalent: ($1$) $ \sqrt{a} + 1 > \sqrt{b} $; ($2$) for every $ x > 1, ax + \frac{x}{x - 1} > b$.

2002 Kazakhstan National Olympiad, 2

Let $x_1,x_2,\ldots,x_n$ be arbitrary real numbers. Prove the inequality \[ \frac{x_1}{1+x_1^2} + \frac{x_2}{1+x_1^2 + x_2^2} + \cdots + \frac{x_n}{1 + x_1^2 + \cdots + x_n^2} < \sqrt{n}. \]

2007 India National Olympiad, 6

If $ x$, $ y$, $ z$ are positive real numbers, prove that \[ \left(x \plus{} y \plus{} z\right)^2 \left(yz \plus{} zx \plus{} xy\right)^2 \leq 3\left(y^2 \plus{} yz \plus{} z^2\right)\left(z^2 \plus{} zx \plus{} x^2\right)\left(x^2 \plus{} xy \plus{} y^2\right) .\]

MathLinks Contest 7th, 5.3

If $ a\geq b\geq c\geq d > 0$ such that $ abcd\equal{}1$, then prove that \[ \frac 1{1\plus{}a} \plus{} \frac 1{1\plus{}b} \plus{} \frac 1{1\plus{}c} \geq \frac {3}{1\plus{}\sqrt[3]{abc}}.\]

2010 AMC 12/AHSME, 20

A geometric sequence $ (a_n)$ has $ a_1\equal{}\sin{x}, a_2\equal{}\cos{x},$ and $ a_3\equal{}\tan{x}$ for some real number $ x$. For what value of $ n$ does $ a_n\equal{}1\plus{}\cos{x}$? $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 7 \qquad \textbf{(E)}\ 8$

2007 Bulgaria Team Selection Test, 2

Let $n,k$ be positive integers such that $n\geq2k>3$ and $A= \{1,2,...,n\}.$ Find all $n$ and $k$ such that the number of $k$-element subsets of $A$ is $2n-k$ times bigger than the number of $2$-element subsets of $A.$

2010 Bosnia And Herzegovina - Regional Olympiad, 1

Prove the inequality $$ \frac{y^2-x^2}{2x^2+1}+\frac{z^2-y^2}{2y^2+1}+\frac{x^2-z^2}{2z^2+1} \geq 0$$ where $x$, $y$ and $z$ are real numbers

2010 China Team Selection Test, 3

Let $n_1,n_2, \cdots, n_{26}$ be pairwise distinct positive integers satisfying (1) for each $n_i$, its digits belong to the set $\{1,2\}$; (2) for each $i,j$, $n_i$ can't be obtained from $n_j$ by adding some digits on the right. Find the smallest possible value of $\sum_{i=1}^{26} S(n_i)$, where $S(m)$ denotes the sum of all digits of a positive integer $m$.

1985 All Soviet Union Mathematical Olympiad, 402

Given unbounded strictly increasing sequence $a_1, a_2, ... , a_n, ...$ of positive numbers. Prove that a) there exists a number $k_0$ such that for all $k>k_0$ the following inequality is valid: $$\frac{a_1}{a_2}+ \frac{a_2}{a_3} + ... + \frac{a_k}{a_{k-1} }< k - 1$$ b) there exists a number $k_0$ such that for all $k>k_0$ the following inequality is valid: $$\frac{a_1}{a_2}+ \frac{a_2}{a_3} + ... + \frac{a_k}{a_{k-1} }< k - 1985$$

2007 Iran Team Selection Test, 2

Triangle $ABC$ is isosceles ($AB=AC$). From $A$, we draw a line $\ell$ parallel to $BC$. $P,Q$ are on perpendicular bisectors of $AB,AC$ such that $PQ\perp BC$. $M,N$ are points on $\ell$ such that angles $\angle APM$ and $\angle AQN$ are $\frac\pi2$. Prove that \[\frac{1}{AM}+\frac1{AN}\leq\frac2{AB}\]

2000 Moldova National Olympiad, Problem 1

Tags: inequalities
Positive numbers $a$ and $b$ satisfy $a^{1999}+b^{2000}{\ge}a^{2000}+b^{2001}$.Prove that $a^{2000}+b^{2000}{\leq}2$. _____________________________________ Azerbaijan Land of the Fire :lol:

2024 VJIMC, 1

Suppose that $f:[-1,1] \to \mathbb{R}$ is continuous and satisfies \[\left(\int_{-1}^1 e^xf(x) dx\right)^2 \ge \left(\int_{-1}^1 f(x) dx\right)\left(\int_{-1}^1 e^{2x}f(x) dx\right).\] Prove that there exists a point $c \in (-1,1)$ such that $f(c)=0$.

2016 Belarus Team Selection Test, 1

Let $a,b,c,d,x,y$ denote the lengths of the sides $AB, BC,CD,DA$ and the diagonals $AC,BD$ of a cyclic quadrilateral $ABCD$ respectively. Prove that $$(\frac{1}{a}+\frac{1}{c})^2+(\frac{1}{b}+\frac{1}{d})^2 \geq 8 ( \frac{1}{x^2}+\frac{1}{y^2})$$

2009 International Zhautykov Olympiad, 3

In a checked $ 17\times 17$ table, $ n$ squares are colored in black. We call a line any of rows, columns, or any of two diagonals of the table. In one step, if at least $ 6$ of the squares in some line are black, then one can paint all the squares of this line in black. Find the minimal value of $ n$ such that for some initial arrangement of $ n$ black squares one can paint all squares of the table in black in some steps.

2013 Balkan MO Shortlist, A2

Let $a, b, c$ and $d$ are positive real numbers so that $abcd = \frac14$. Prove that holds $$\left( 16ac +\frac{a}{c^2b}+\frac{16c}{a^2d}+\frac{4}{ac}\right)\left( bd +\frac{b}{256d^2c}+\frac{d}{b^2a}+\frac{1}{64bd}\right) \ge \frac{81}{4}$$ When does the equality hold?

2015 Moldova Team Selection Test, 2

Tags: inequalities
Let $a,b,c$ be positive real numbers such that $abc=1$. Prove the following inequality: \\$a^3+b^3+c^3+\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2} \geq \frac{9}{2}$.

2020 IMO Shortlist, G4

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\] (A disk is assumed to contain its boundary.)

2006 District Olympiad, 4

For each positive integer $n\geq 2$ we denote with $p(n)$ the largest prime number less than or equal to $n$, and with $q(n)$ the smallest prime number larger than $n$. Prove that \[ \sum^n_{k=2} \frac 1{p(k)q(k)} < \frac 12. \]

2008 Tuymaada Olympiad, 8

A convex hexagon is given. Let $ s$ be the sum of the lengths of the three segments connecting the midpoints of its opposite sides. Prove that there is a point in the hexagon such that the sum of its distances to the lines containing the sides of the hexagon does not exceed $ s.$ [i]Author: N. Sedrakyan[/i]

1995 IMO Shortlist, 5

Let $ ABCDEF$ be a convex hexagon with $ AB \equal{} BC \equal{} CD$ and $ DE \equal{} EF \equal{} FA$, such that $ \angle BCD \equal{} \angle EFA \equal{} \frac {\pi}{3}$. Suppose $ G$ and $ H$ are points in the interior of the hexagon such that $ \angle AGB \equal{} \angle DHE \equal{} \frac {2\pi}{3}$. Prove that $ AG \plus{} GB \plus{} GH \plus{} DH \plus{} HE \geq CF$.

2005 China National Olympiad, 4

The sequence $\{a_n\}$ is defined by: $a_1=\frac{21}{16}$, and for $n\ge2$,\[ 2a_n-3a_{n-1}=\frac{3}{2^{n+1}}. \]Let $m$ be an integer with $m\ge2$. Prove that: for $n\le m$, we have\[ \left(a_n+\frac{3}{2^{n+3}}\right)^{\frac{1}{m}}\left(m-\left(\frac{2}{3}\right)^{{\frac{n(m-1)}{m}}}\right)<\frac{m^2-1}{m-n+1}. \]

2002 District Olympiad, 3

Let be two real numbers $ a,b, $ that satisfy $ 3^a+13^b=17^a $ and $ 5^a+7^b=11^b. $ Show that $ a<b. $

2013 Bogdan Stan, 3

Let $ a,b,c $ be three real numbers such that $ \cos a+\cos b+\cos c=\sin a+\sin b+\sin c=0. $ Prove that [b]i)[/b] $ \cos 6a+\cos 6b+\cos 6c=3\cos (2a+2b+2c) $ [b]ii)[/b] $ \sin 6a+\sin 6b+\sin 6c=3\sin (2a+2b+2c) $ [i]Vasile Pop[/i]

2008 IberoAmerican, 5

Let $ ABC$ a triangle and $ X$, $ Y$ and $ Z$ points at the segments $ BC$, $ AC$ and $ AB$, respectively.Let $ A'$, $ B'$ and $ C'$ the circuncenters of triangles $ AZY$,$ BXZ$,$ CYX$, respectively.Prove that $ 4(A'B'C')\geq(ABC)$ with equality if and only if $ AA'$, $ BB'$ and $ CC'$ are concurrents. Note: $ (XYZ)$ denotes the area of $ XYZ$