This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2011 Kazakhstan National Olympiad, 2

Given a positive integer $n$. Prove the inequality $\sum\limits_{i=1}^{n}\frac{1}{i(i+1)(i+2)(i+3)(i+4)}<\frac{1}{96}$

2016 JBMO Shortlist, 2

Tags: inequalities
Let $a,b,c $be positive real numbers.Prove that $\frac{8}{(a+b)^2 + 4abc} + \frac{8}{(b+c)^2 + 4abc} + \frac{8}{(a+c)^2 + 4abc} + a^2 + b^2 + c ^2 \ge \frac{8}{a+3} + \frac{8}{b+3} + \frac{8}{c+3}$.

2019 ELMO Shortlist, A1

Let $a$, $b$, $c$ be positive reals such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$. Show that $$a^abc+b^bca+c^cab\ge 27bc+27ca+27ab.$$ [i]Proposed by Milan Haiman[/i]

2024 Austrian MO Regional Competition, 1

Let $a$, $b$ and $c$ be real numbers larger than $1$. Prove the inequality $$\frac{ab}{c-1}+\frac{bc}{a - 1}+\frac{ca}{b -1} \ge 12.$$ When does equality hold? [i](Karl Czakler)[/i]

2023 Cono Sur Olympiad, 1

A list of \(n\) positive integers \(a_1, a_2,a_3,\ldots,a_n\) is said to be [i]good[/i] if it checks simultaneously: \(\bullet a_1<a_2<a_3<\cdots<a_n,\) \(\bullet a_1+a_2^2+a_3^3+\cdots+a_n^n\le 2023.\) For each \(n\ge 1\), determine how many [i]good[/i] lists of \(n\) numbers exist.

VMEO IV 2015, 11.1

Let $k \ge 0$ and $a, b, c$ be three positive real numbers such that $$\frac{a}{b}+\frac{b}{c}+ \frac{c}{a}= (k + 1)^2 + \frac{2}{k+ 1}.$$ Prove that $$a^2 + b^2 + c^2 \le (k^2 + 1)(ab + bc + ca).$$

2015 China Northern MO, 8

Given a positive integer $n \ge 3$. Find the smallest real number $k$ such that for any positive real number except $a_1, a_2,..,a_n$, $$\sum_{i=1}^{n-1}\frac{a_i}{ s-a_i}+\frac{ka_n}{s-a_n} \ge \frac{n-1}{n-2}$$ where, $s=a_1+a_2+..+a_n$

2010 JBMO Shortlist, 2

A $9\times 7$ rectangle is tiled with tiles of the two types: L-shaped tiles composed by three unit squares (can be rotated repeatedly with $90^\circ$) and square tiles composed by four unit squares. Let $n\ge 0$ be the number of the $2 \times 2 $ tiles which can be used in such a tiling. Find all the values of $n$.

2017 China Western Mathematical Olympiad, 8

Let $a_1,a_2,\cdots,a_n>0$ $(n\geq 2)$. Prove that$$\sum_{i=1}^n max\{a_1,a_2,\cdots,a_i \} \cdot min \{a_i,a_{i+1},\cdots,a_n\}\leq \frac{n}{2\sqrt{n-1}}\sum_{i=1}^n a^2_i$$

1987 Swedish Mathematical Competition, 5

Show that there exists a positive number t such that for all positive numbers $a,b,c,d$ with $abcd = 1$, $$\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}> t.$$ and find the largest $t$ with this property.

2009 IberoAmerican, 2

Define the succession $ a_{n}$, $ n>0$ as $ n\plus{}m$, where $ m$ is the largest integer such that $ 2^{2^{m}}\leq n2^{n}$. Find all numbers that are not in the succession.

2024 India Regional Mathematical Olympiad, 4

Let $a_1,a_2,a_3,a_4$ be real numbers such that $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$. Show that there exist $i,j$ with $ 1 \leq i < j \leq 4$, such that $(a_i - a_j)^2 \leq \frac{1}{5}$.

2010 Junior Balkan Team Selection Tests - Moldova, 5

Tags: inequalities
For any strictly positive numbers $a$ and $b$ , prove the inequality $$\frac{a}{a+b} \cdot \frac{a+2b}{a+3b} < \sqrt{ \frac{a}{a+4b}}.$$

2021 South East Mathematical Olympiad, 7

Let $a,b,c$ be pairwise distinct positive real, Prove that$$\dfrac{ab+bc+ca}{(a+b)(b+c)(c+a)}<\dfrac17(\dfrac{1}{|a-b|}+\dfrac{1}{|b-c|}+\dfrac{1}{|c-a|}).$$

2009 Finnish National High School Mathematics Competition, 5

As in the picture below, the rectangle on the left hand side has been divided into four parts by line segments which are parallel to a side of the rectangle. The areas of the small rectangles are $A,B,C$ and $D$. Similarly, the small rectangles on the right hand side have areas $A^\prime,B^\prime,C^\prime$ and $D^\prime$. It is known that $A\leq A^\prime$, $B\leq B^\prime$, $C\leq C^\prime$ but $D\leq B^\prime$. [asy] import graph; size(12cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-4.3,xmax=12.32,ymin=-10.68,ymax=6.3; draw((0,3)--(0,0)); draw((3,0)--(0,0)); draw((3,0)--(3,3)); draw((0,3)--(3,3)); draw((2,0)--(2,3)); draw((0,2)--(3,2)); label("$A$",(0.86,2.72),SE*lsf); label("$B$",(2.38,2.7),SE*lsf); label("$C$",(2.3,1.1),SE*lsf); label("$D$",(0.82,1.14),SE*lsf); draw((5,2)--(11,2)); draw((5,2)--(5,0)); draw((11,0)--(5,0)); draw((11,2)--(11,0)); draw((8,0)--(8,2)); draw((5,1)--(11,1)); label("$A'$",(6.28,1.8),SE*lsf); label("$B'$",(9.44,1.82),SE*lsf); label("$C'$",(9.4,0.8),SE*lsf); label("$D'$",(6.3,0.86),SE*lsf); dot((0,3),linewidth(1pt)+ds); dot((0,0),linewidth(1pt)+ds); dot((3,0),linewidth(1pt)+ds); dot((3,3),linewidth(1pt)+ds); dot((2,0),linewidth(1pt)+ds); dot((2,3),linewidth(1pt)+ds); dot((0,2),linewidth(1pt)+ds); dot((3,2),linewidth(1pt)+ds); dot((5,0),linewidth(1pt)+ds); dot((5,2),linewidth(1pt)+ds); dot((11,0),linewidth(1pt)+ds); dot((11,2),linewidth(1pt)+ds); dot((8,0),linewidth(1pt)+ds); dot((8,2),linewidth(1pt)+ds); dot((5,1),linewidth(1pt)+ds); dot((11,1),linewidth(1pt)+ds); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy] Prove that the big rectangle on the left hand side has area smaller or equal to the area of the big rectangle on the right hand side, i.e. $A+B+C+D\leq A^\prime+B^\prime+C^\prime+D^\prime$.

1988 IMO Longlists, 70

$ABC$ is a triangle, with inradius $r$ and circumradius $R.$ Show that: \[ \sin \left( \frac{A}{2} \right) \cdot \sin \left( \frac{B}{2} \right) + \sin \left( \frac{B}{2} \right) \cdot \sin \left( \frac{C}{2} \right) + \sin \left( \frac{C}{2} \right) \cdot \sin \left( \frac{A}{2} \right) \leq \frac{5}{8} + \frac{r}{4 \cdot R}. \]

2019 Stars of Mathematics, 4

For positive real numbers $a_1, a_2, ..., a_n$ with product 1 prove: $$\left(\frac{a_1}{a_2}\right)^{n-1}+\left(\frac{a_2}{a_3}\right)^{n-1}+...+\left(\frac{a_{n-1}}{a_n}\right)^{n-1}+\left(\frac{a_n}{a_1}\right)^{n-1} \geq a_1^{2}+a_2^{2}+...+a_n^{2}$$ Proposed by Andrei Eckstein

2007 China Team Selection Test, 1

Tags: inequalities
Let $ a_{1},a_{2},\cdots,a_{n}$ be positive real numbers satisfying $ a_{1} \plus{} a_{2} \plus{} \cdots \plus{} a_{n} \equal{} 1$. Prove that \[\left(a_{1}a_{2} \plus{} a_{2}a_{3} \plus{} \cdots \plus{} a_{n}a_{1}\right)\left(\frac {a_{1}}{a_{2}^2 \plus{} a_{2}} \plus{} \frac {a_{2}}{a_{3}^2 \plus{} a_{3}} \plus{} \cdots \plus{} \frac {a_{n}}{a_{1}^2 \plus{} a_{1}}\right)\ge\frac {n}{n \plus{} 1}\]

2020 Kazakhstan National Olympiad, 2

Let $x_1, x_2, ... , x_n$ be a real numbers such that\\ 1) $1 \le x_1, x_2, ... , x_n \le 160$ 2) $x^{2}_{i} + x^{2}_{j} + x^{2}_{k} \ge 2(x_ix_j + x_jx_k + x_kx_i)$ for all $1\le i < j < k \le n$ Find the largest possible $n$.

2013 ELMO Shortlist, 8

Let $a, b, c$ be positive reals with $a^{2014}+b^{2014}+c^{2014}+abc=4$. Prove that \[ \frac{a^{2013}+b^{2013}-c}{c^{2013}} + \frac{b^{2013}+c^{2013}-a}{a^{2013}} + \frac{c^{2013}+a^{2013}-b}{b^{2013}} \ge a^{2012}+b^{2012}+c^{2012}. \][i]Proposed by David Stoner[/i]

2017 Turkey Team Selection Test, 5

For all positive real numbers $a,b,c$ with $a+b+c=3$, show that $$a^3b+b^3c+c^3a+9\geq 4(ab+bc+ca).$$

1995 Polish MO Finals, 1

Tags: inequalities
The positive reals $x_1, x_2, ... , x_n$ have harmonic mean $1$. Find the smallest possible value of $x_1 + \frac{x_2 ^2}{2} + \frac{x_3 ^3}{3} + ... + \frac{x_n ^n}{n}$.

2014 China Western Mathematical Olympiad, 1

Let $x,y$ be positive real numbers .Find the minimum of $x+y+\frac{|x-1|}{y}+\frac{|y-1|}{x}$.

2022 Indonesia TST, A

Let $a, b, c$ be positive real numbers such that $abc = 1$. Prove that $$(a + b + c)(ab + bc + ca) + 3\ge 4(a + b + c).$$

2008 Bosnia And Herzegovina - Regional Olympiad, 2

IF $ a$, $ b$ and $ c$ are positive reals such that $ a^{2}\plus{}b^{2}\plus{}c^{2}\equal{}1$ prove the inequality: \[ \frac{a^{5}\plus{}b^{5}}{ab(a\plus{}b)}\plus{} \frac {b^{5}\plus{}c^{5}}{bc(b\plus{}c)}\plus{}\frac {c^{5}\plus{}a^{5}}{ca(a\plus{}b)}\geq 3(ab\plus{}bc\plus{}ca)\minus{}2.\]