This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2016 Bulgaria EGMO TST, 3

Prove that there is no function $f:\mathbb{R}^{+} \to \mathbb{R}^{+}$ such that $f(x)^2 \geq f(x+y)(f(x)+y)$ for all $x,y \in \mathbb{R}^{+}$.

2013 District Olympiad, 1

Let ${{\left( {{a}_{n}} \right)}_{n\ge 1}}$ an increasing sequence and bounded.Calculate $\underset{n\to \infty }{\mathop{\lim }}\,\left( 2{{a}_{n}}-{{a}_{1}}-{{a}_{2}} \right)\left( 2{{a}_{n}}-{{a}_{2}}-{{a}_{3}} \right)...\left( 2{{a}_{n}}-{{a}_{n-2}}-{{a}_{n-1}} \right)\left( 2{{a}_{n}}-{{a}_{n-1}}-{{a}_{1}} \right).$

2005 Germany Team Selection Test, 3

We have $2p-1$ integer numbers, where $p$ is a prime number. Prove that we can choose exactly $p$ numbers (from these $2p-1$ numbers) so that their sum is divisible by $p$.

2011 China Second Round Olympiad, 3

Let $a,b$ be positive reals such that $\frac{1}{a}+\frac{1}{b}\leq2\sqrt2$ and $(a-b)^2=4(ab)^3$. Find $\log_a b$.

2019 Jozsef Wildt International Math Competition, W. 38

Let $a$, $b$, $c$ be the sides of an acute triangle $\triangle ABC$ , then for any $x, y, z \geq 0$, such that $xy+yz+zx=1$ holds inequality:$$a^2x + b^2y + c^2z \geq 4F$$ where $F$ is the area of the triangle $\triangle ABC$

2016 China Team Selection Test, 2

Find the smallest positive number $\lambda $ , such that for any complex numbers ${z_1},{z_2},{z_3}\in\{z\in C\big| |z|<1\}$ ,if $z_1+z_2+z_3=0$, then $$\left|z_1z_2 +z_2z_3+z_3z_1\right|^2+\left|z_1z_2z_3\right|^2 <\lambda .$$

2000 South africa National Olympiad, 4

$ABCD$ is a square of side 1. $P$ and $Q$ are points on $AB$ and $BC$ such that $\widehat{PDQ} = 45^{\circ}$. Find the perimeter of $\Delta PBQ$.

2010 Contests, 2

Tags: inequalities
Let $a, b, c$ be positive reals such that $abc=1$. Show that \[\frac{1}{a^5(b+2c)^2} + \frac{1}{b^5(c+2a)^2} + \frac{1}{c^5(a+2b)^2} \ge \frac{1}{3}.\]

2004 India IMO Training Camp, 1

Let $x_1, x_2 , x_3, .... x_n$ be $n$ real numbers such that $0 < x_j < \frac{1}{2}$. Prove that \[ \frac{ \prod\limits_{j=1}^{n} x_j } { \left( \sum\limits_{j=1}^{n} x_j \right)^n} \leq \frac{ \prod\limits_{j=1}^{n} (1-x_j) } { \left( \sum\limits_{j=1}^{n} (1 - x_j) \right)^n} \]

2017 Saudi Arabia IMO TST, 1

Let $a, b$ and $c$ be positive real numbers such that min $\{ab, bc, ca\} \ge 1$. Prove that $$\sqrt[3]{(a^2 + 1)(b^2 + 1)(c^2 + 1)} \le (\frac{a+b+c}{3} )^2 + 1 $$

2012 Czech And Slovak Olympiad IIIA, 3

Prove that there are two numbers $u$ and $v$, between any $101$ real numbers that apply $100 |u - v| \cdot |1 - uv| \le (1 + u^2)(1 + v^2)$

2024 Al-Khwarizmi IJMO, 3

Tags: inequalities
Find all $x, y, z \in \left (0, \frac{1}{2}\right )$ such that $$ \begin{cases} (3 x^{2}+y^{2}) \sqrt{1-4 z^{2}} \geq z; \\ (3 y^{2}+z^{2}) \sqrt{1-4 x^{2}} \geq x; \\ (3 z^{2}+x^{2}) \sqrt{1-4 y^{2}} \geq y. \end{cases} $$ [i]Proposed by Ngo Van Trang, Vietnam[/i]

2005 Croatia National Olympiad, 3

Tags: inequalities
If $k, l, m$ are positive integers with $\frac{1}{k}+\frac{1}{l}+\frac{1}{m}<1$, find the maximum possible value of $\frac{1}{k}+\frac{1}{l}+\frac{1}{m}$.

1993 Poland - First Round, 3

Tags: inequalities
Prove that if $a,b,c$ are the lengths of the sides of a triangle, then $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{1}{a+b-c}+\frac{1}{c+a-b}+\frac{1}{b+c-a}$.

2005 Iran MO (3rd Round), 1

Suppose $a,b,c\in \mathbb R^+$. Prove that :\[\left(\frac ab+\frac bc+\frac ca\right)^2\geq (a+b+c)\left(\frac1a+\frac1b+\frac1c\right)\]

2004 Irish Math Olympiad, 5

Tags: inequalities
Let $a,b\ge 0$. Prove that $$\sqrt{2}\left(\sqrt{a(a+b)^3}+b\sqrt{a^2+b^2}\right)\le 3(a^2+b^2)$$ with equality if and only if $a=b$.

1973 Spain Mathematical Olympiad, 2

Determine all solutions of the system $$\begin{cases} 2x - 5y + 11z - 6 = 0 \\ -x + 3y - 16z + 8 = 0 \\ 4x - 5y - 83z + 38 = 0 \\ 3x + 11y - z + 9 > 0 \end{cases}$$ in which the first three are equations and the last one is a linear inequality.

2003 China Team Selection Test, 3

Suppose $A\subset \{(a_1,a_2,\dots,a_n)\mid a_i\in \mathbb{R},i=1,2\dots,n\}$. For any $\alpha=(a_1,a_2,\dots,a_n)\in A$ and $\beta=(b_1,b_2,\dots,b_n)\in A$, we define \[ \gamma(\alpha,\beta)=(|a_1-b_1|,|a_2-b_2|,\dots,|a_n-b_n|), \] \[ D(A)=\{\gamma(\alpha,\beta)\mid\alpha,\beta\in A\}. \] Please show that $|D(A)|\geq |A|$.

2008 Mathcenter Contest, 4

Let $p,q,r \in \mathbb{R}^+$ and for every $n \in \mathbb{N}$ where $pqr=1$ , denote $$ \frac{1}{p^n+q^n+1} + \frac{1}{q^n+r^n+1} + \frac{1}{r^n+p^n+ 1} \leq 1$$ [i](Art-Ninja)[/i]

2007 Romania Team Selection Test, 1

Let $\mathcal{F}$ be the set of all the functions $f : \mathcal{P}(S) \longrightarrow \mathbb{R}$ such that for all $X, Y \subseteq S$, we have $f(X \cap Y) = \min (f(X), f(Y))$, where $S$ is a finite set (and $\mathcal{P}(S)$ is the set of its subsets). Find \[\max_{f \in \mathcal{F}}| \textrm{Im}(f) |. \]

2018 Hanoi Open Mathematics Competitions, 3

How many integers $n$ are there those satisfy the following inequality $n^4 - n^3 - 3n^2 - 3n - 17 < 0$? A. $4$ B. $6$ C. $8$ D. $10$ E. $12$

2002 Austria Beginners' Competition, 3

Find all real numbers $x$ that satisfy the following inequality $|x^2-4x+1|>|x^2-4x+5|$

2024 Austrian MO National Competition, 1

Determine the smallest real constant $C$ such that the inequality \[(X+Y)^2(X^2+Y^2+C)+(1-XY)^2 \ge 0\] holds for all real numbers $X$ and $Y$. For which values of $X$ and $Y$ does equality hold for this smallest constant $C$? [i](Walther Janous)[/i]

2020 BMT Fall, 8

Compute the smallest value $C$ such that the inequality $$x^2(1+y)+y^2(1+x)\le \sqrt{(x^4+4)(y^4+4)}+C$$ holds for all real $x$ and $y$.

2012 Macedonia National Olympiad, 3

Find all functions $f : \mathbb{R} \to \mathbb{Z}$ which satisfy the conditions: $f(x+y) < f(x) + f(y)$ $f(f(x)) = \lfloor {x} \rfloor + 2$