This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2006 Lithuania Team Selection Test, 1

Let $a_1, a_2, \dots, a_n$ be positive real numbers, whose sum is $1$. Prove that \[ \frac{a_1^2}{a_1+a_2}+\frac{a_2^2}{a_2+a_3}+\dots+\frac{a_{n-1}^2}{a_{n-1}+a_n}+\frac{a_n^2}{a_n+a_1}\ge \frac{1}{2} \]

1990 Czech and Slovak Olympiad III A, 4

Determine the largest $k\ge0$ such that the inequality \[\left(\sum_{j=1}^n x_j\right)^2\left(\sum_{j=1}^n x_jx_{j+1}\right)\ge k\sum_{j=1}^n x_j^2x_{j+1}^2\] holds for every $n\ge2$ and any $n$-tuple $x_1,\ldots,x_n$ of non-negative numbers (given that $x_{n+1}=x_1$)

Today's calculation of integrals, 884

Prove that : \[\pi (e-1)<\int_0^{\pi} e^{|\cos 4x|}dx<2(e^{\frac{\pi}{2}}-1)\]

1962 Vietnam National Olympiad, 1

Tags: inequalities
Prove that for positive real numbers $ a$, $ b$, $ c$, $ d$, we have \[ \frac{1}{\frac{1}{a}\plus{}\frac{1}{b}}\plus{}\frac{1}{\frac{1}{c}\plus{}\frac{1}{d}}\le\frac{1}{\frac{1}{a\plus{}c}\plus{}\frac{1}{b\plus{}d}}\]

1990 IMO Longlists, 4

Find the minimal value of the function \[\begin{array}{c}\ f(x) =\sqrt{15 - 12 \cos x} + \sqrt{4 -2 \sqrt 3 \sin x}+\sqrt{7-4\sqrt 3 \sin x} +\sqrt{10-4 \sqrt 3 \sin x - 6 \cos x}\end{array}\]

2010 AIME Problems, 9

Let $ (a,b,c)$ be the real solution of the system of equations $ x^3 \minus{} xyz \equal{} 2$, $ y^3 \minus{} xyz \equal{} 6$, $ z^3 \minus{} xyz \equal{} 20$. The greatest possible value of $ a^3 \plus{} b^3 \plus{} c^3$ can be written in the form $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.

1997 Romania National Olympiad, 2

Tags: inequalities
I found this inequality in "Topics in Inequalities" (I 85) For all positive reals $x,y,z$ with $xyz=1$ prove: \[ \frac{x^9+y^9}{x^6+x^3y^3+y^6}+\frac{y^9+z^9}{y^6+y^3z^3+z^6}+\frac{z^9+x^9}{z^6+z^3x^3+x^6}\geq 2 \]

2007 Junior Balkan Team Selection Tests - Romania, 4

Tags: inequalities
Let $a, b, c$ three positive reals such that \[\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\geq 1. \] Show that \[a+b+c\geq ab+bc+ca. \]

2012 China Team Selection Test, 2

Given two integers $m,n$ which are greater than $1$. $r,s$ are two given positive real numbers such that $r<s$. For all $a_{ij}\ge 0$ which are not all zeroes,find the maximal value of the expression \[f=\frac{(\sum_{j=1}^{n}(\sum_{i=1}^{m}a_{ij}^s)^{\frac{r}{s}})^{\frac{1}{r}}}{(\sum_{i=1}^{m})\sum_{j=1}^{n}a_{ij}^r)^{\frac{s}{r}})^{\frac{1}{s}}}.\]

2003 China Team Selection Test, 1

Tags: inequalities
$x$, $y$ and $z$ are positive reals such that $x+y+z=xyz$. Find the minimum value of: \[ x^7(yz-1)+y^7(zx-1)+z^7(xy-1) \]

2016 Korea USCM, 4

Suppose a continuous function $f:[-\frac{\pi}{4},\frac{\pi}{4}]\to[-1,1]$ and differentiable on $(-\frac{\pi}{4},\frac{\pi}{4})$. Then, there exists a point $x_0\in (-\frac{\pi}{4},\frac{\pi}{4})$ such that $$|f'(x_0)|\leq 1+f(x_0)^2$$

2011 Benelux, 3

If $k$ is an integer, let $\mathrm{c}(k)$ denote the largest cube that is less than or equal to $k$. Find all positive integers $p$ for which the following sequence is bounded: $a_0 = p$ and $a_{n+1} = 3a_n-2\mathrm{c}(a_n)$ for $n \geqslant 0$.

2014 Iran Team Selection Test, 5

$n$ is a natural number. for every positive real numbers $x_{1},x_{2},...,x_{n+1}$ such that $x_{1}x_{2}...x_{n+1}=1$ prove that: $\sqrt[x_{1}]{n}+...+\sqrt[x_{n+1}]{n} \geq n^{\sqrt[n]{x_{1}}}+...+n^{\sqrt[n]{x_{n+1}}}$

2004 Romania National Olympiad, 2

Let $P(n)$ be the number of functions $f: \mathbb{R} \to \mathbb{R}$, $f(x)=a x^2 + b x + c$, with $a,b,c \in \{1,2,\ldots,n\}$ and that have the property that $f(x)=0$ has only integer solutions. Prove that $n<P(n)<n^2$, for all $n \geq 4$. [i]Laurentiu Panaitopol[/i]

2014 ELMO Shortlist, 2

Tags: inequalities
Given positive reals $a,b,c,p,q$ satisfying $abc=1$ and $p \geq q$, prove that \[ p \left(a^2+b^2+c^2\right) + q\left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq (p+q) (a+b+c). \][i]Proposed by AJ Dennis[/i]

2011 JBMO Shortlist, 7

Tags: inequalities
$\boxed{\text{A7}}$ Let $a,b,c$ be positive reals such that $abc=1$.Prove the inequality $\sum\frac{2a^2+\frac{1}{a}}{b+\frac{1}{a}+1}\geq 3$

2007 Austria Beginners' Competition, 3

For real numbers $x \ge 0$ and $y \ge 0$, write $A= \frac{x+y}{2}$ for the arithmetic mean and $G=\sqrt{xy}$ for the geometric mean of $x$ and $y$. Furthermore, let $W= \frac{\sqrt{x}+\sqrt{y}}{2}$ be the arithmetic mean of $\sqrt{x}$ and $\sqrt{y}$. Prove that $$G\le W^2 \le A.$$ Determine all $x$ and $y$ such that $G= W^2 = A$

2016 Mexico National Olmypiad, 3

Find the minimum real $x$ that satisfies $$\lfloor x \rfloor <\lfloor x^2 \rfloor <\lfloor x^3 \rfloor < \cdots < \lfloor x^n \rfloor < \lfloor x^{n+1} \rfloor < \cdots$$

2023 India National Olympiad, 2

Suppose $a_0,\ldots, a_{100}$ are positive reals. Consider the following polynomial for each $k$ in $\{0,1,\ldots, 100\}$: $$a_{100+k}x^{100}+100a_{99+k}x^{99}+a_{98+k}x^{98}+a_{97+k}x^{97}+\dots+a_{2+k}x^2+a_{1+k}x+a_k,$$where indices are taken modulo $101$, [i]i.e.[/i], $a_{100+i}=a_{i-1}$ for any $i$ in $\{1,2,\dots, 100\}$. Show that it is impossible that each of these $101$ polynomials has all its roots real. [i]Proposed by Prithwijit De[/i]

2007 China Team Selection Test, 3

Find the smallest constant $ k$ such that $ \frac {x}{\sqrt {x \plus{} y}} \plus{} \frac {y}{\sqrt {y \plus{} z}} \plus{} \frac {z}{\sqrt {z \plus{} x}}\leq k\sqrt {x \plus{} y \plus{} z}$ for all positive $ x$, $ y$, $ z$.

1961 Putnam, B5

Let $k$ be a positive integer, and $n$ a positive integer greater than $2$. Define $$f_{1}(n)=n,\;\; f_{2}(n)=n^{f_{1}(n)},\;\ldots\;, f_{j+1}(n)=n^{f_{j}(n)}.$$ Prove either part of the inequality $$f_{k}(n) < n!! \cdots ! < f_{k+1}(n),$$ where the middle term has $k$ factorial symbols.

1999 Mongolian Mathematical Olympiad, Problem 3

Let $(a_n)^\infty_{n=1}$ be a non-decreasing sequence of natural numbers with $a_{20}=100$. A sequence $(b_n)$ is defined by $b_m=\min\{n|an\ge m\}$. Find the maximum value of $a_1+a_2+\ldots+a_{20}+b_1+b_2+\ldots+b_{100}$ over all such sequences $(a_n)$.

2005 Canada National Olympiad, 2

Let $(a,b,c)$ be a Pythagorean triple, i.e. a triplet of positive integers with $ a^2\plus{}b^2\equal{}c^2$. $a)$ Prove that $\left(\frac{c}{a}\plus{}\frac{c}{b}\right)^2>8$. $b)$ Prove that there are no integer $n$ and Pythagorean triple $(a,b,c)$ satisfying $\left(\frac{c}{a}\plus{}\frac{c}{b}\right)^2\equal{}n$.

2022 Czech-Polish-Slovak Junior Match, 1

Determine the largest possible value of the expression $ab+bc+ 2ac$ for non-negative real numbers $a, b, c$ whose sum is $1$.

2014 Putnam, 3

Let $a_0=5/2$ and $a_k=a_{k-1}^2-2$ for $k\ge 1.$ Compute \[\prod_{k=0}^{\infty}\left(1-\frac1{a_k}\right)\] in closed form.