This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2020 Final Mathematical Cup, 2

Let $a,b,c$ be positive real numbers . Prove that$$ \frac{1}{ab(b+1)(c+1)}+\frac{1}{bc(c+1)(a+1)}+\frac{1}{ca(a+1)(b+1)}\geq\frac{3}{(1+abc)^2}.$$

2000 JBMO ShortLists, 20

Let $ABC$ be a triangle and let $a,b,c$ be the lengths of the sides $BC, CA, AB$ respectively. Consider a triangle $DEF$ with the side lengths $EF=\sqrt{au}$, $FD=\sqrt{bu}$, $DE=\sqrt{cu}$. Prove that $\angle A >\angle B >\angle C$ implies $\angle A >\angle D >\angle E >\angle F >\angle C$.

2018 JBMO Shortlist, A6

For $a,b,c$ positive real numbers such that $ab+bc+ca=3$, prove: $ \frac{a}{\sqrt{a^3+5}}+\frac{b}{\sqrt{b^3+5}}+\frac{c}{\sqrt{c^3+5}} \leq \frac{\sqrt{6}}{2}$ [i]Proposed by Dorlir Ahmeti, Albania[/i]

2016 Croatia Team Selection Test, Problem 1

Let $n \ge 1$ and $x_1, \ldots, x_n \ge 0$. Prove that $$ (x_1 + \frac{x_2}{2} + \ldots + \frac{x_n}{n}) (x_1 + 2x_2 + \ldots + nx_n) \le \frac{(n+1)^2}{4n} (x_1 + x_2 + \ldots + x_n)^2 .$$

the 11th XMO, 2

Suppose $a,b,c>0$ and $abc=64$, show that $$\sum_{cyc}\frac{a^2}{\sqrt{a^3+8}\sqrt{b^3+8}}\ge\frac{2}{3}$$

2022 District Olympiad, P2

$a)$ Prove that $2x^3-3x^2+1\geq 0,~(\forall)x\geq0.$ $b)$ Let $x,y,z\geq 0$ such that $\frac{2}{1+x^3}+\frac{2}{1+y^3}+\frac{2}{1+z^3}=3.$ Prove that $\frac{1-x}{1-x+x^2}+\frac{1-y}{1-y+y^2}+\frac{1-z}{1-z+z^2}\geq 0.$

MathLinks Contest 6th, 6.1

Let $p > 1$ and let $a, b, c, d$ be positive numbers such that $$(a + b + c + d) \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)= 16p^2.$$ Find all values of the ratio $ R =\frac{\max \{a, b, c, d\}}{\min \{a, b, c, d\}}$ (depending on the parameter $p$)

2017 Switzerland - Final Round, 10

Let $x, y, z$ be nonnegative real numbers with $xy + yz + zx = 1$. Show that: $$\frac{4}{x + y + z} \le (x + y)(\sqrt3 z + 1).$$

1972 Yugoslav Team Selection Test, Problem 3

Tags: inequalities
Assume that the numbers from the table $$\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{matrix}$$satisfy the inequality: $$\sum_{j=1}^n|a_{j1}x_1+a_{j2}x_2+\ldots+a_{jn}x_n|\le M,$$for each choice $x_j=\pm1$. Prove that $$|a_{11}+a_{22}+\ldots+a_{nn}|\le M.$$

2012 All-Russian Olympiad, 2

Tags: inequalities
Any two of the real numbers $a_1,a_2,a_3,a_4,a_5$ differ by no less than $1$. There exists some real number $k$ satisfying \[a_1+a_2+a_3+a_4+a_5=2k\]\[a_1^2+a_2^2+a_3^2+a_4^2+a_5^2=2k^2\] Prove that $k^2\ge 25/3$.

2007 China Western Mathematical Olympiad, 4

Let $ O$ be an interior point of the triangle $ ABC$. Prove that there exist positive integers $ p,q$ and $ r$ such that \[ |p\cdot\overrightarrow{OA} \plus{} q\cdot\overrightarrow{OB} \plus{} r\cdot\overrightarrow{OC}|<\frac{1}{2007}\]

2004 Romania Team Selection Test, 9

Let $n\geq 2$ be a positive integer, and $X$ a set with $n$ elements. Let $A_{1},A_{2},\ldots,A_{101}$ be subsets of $X$ such that the union of any $50$ of them has more than $\frac{50}{51}n$ elements. Prove that among these $101$ subsets there exist $3$ subsets such that any two of them have a common element.

2006 AMC 12/AHSME, 24

Let $ S$ be the set of all points $ (x,y)$ in the coordinate plane such that $ 0\le x\le \frac \pi2$ and $ 0\le y\le \frac \pi2$. What is the area of the subset of $ S$ for which \[ \sin^2 x \minus{} \sin x\sin y \plus{} \sin^2 y\le \frac 34? \]$ \textbf{(A) } \frac {\pi^2}9 \qquad \textbf{(B) } \frac {\pi^2}8 \qquad \textbf{(C) } \frac {\pi^2}6\qquad \textbf{(D) } \frac {3\pi^2}{16} \qquad \textbf{(E) } \frac {2\pi^2}9$

2015 Junior Balkan MO, 2

Tags: inequalities
Let $a,b,c$ be positive real numbers such that $a+b+c = 3$. Find the minimum value of the expression \[A=\dfrac{2-a^3}a+\dfrac{2-b^3}b+\dfrac{2-c^3}c.\]

2005 Junior Balkan Team Selection Tests - Romania, 8

Tags: inequalities
Let $a$, $b$, $c$ be three positive reals such that $(a+b)(b+c)(c+a)=1$. Prove that the following inequality holds: \[ ab+bc+ca \leq \frac 34 . \] [i]Cezar Lupu[/i]

2007 Korea National Olympiad, 4

For all positive integer $ n\geq 2$, prove that product of all prime numbers less or equal than $ n$ is smaller than $ 4^{n}$.

2016 International Zhautykov Olympiad, 1

Tags: inequalities
Find all $k>0$ for which a strictly decreasing function $g:(0;+\infty)\to(0;+\infty)$ exists such that $g(x)\geq kg(x+g(x))$ for all positive $x$.

1985 Federal Competition For Advanced Students, P2, 2

Tags: inequalities
For $ n \in \mathbb{N}$, let $ f(n)\equal{}1^n\plus{}2^{n\minus{}1}\plus{}3^{n\minus{}2}\plus{}...\plus{}n^1$. Determine the minimum value of: $ \frac{f(n\plus{}1)}{f(n)}.$

2007 France Team Selection Test, 2

Let $a,b,c,d$ be positive reals such taht $a+b+c+d=1$. Prove that: \[6(a^{3}+b^{3}+c^{3}+d^{3})\geq a^{2}+b^{2}+c^{2}+d^{2}+\frac{1}{8}.\]

2010 Putnam, B1

Is there an infinite sequence of real numbers $a_1,a_2,a_3,\dots$ such that \[a_1^m+a_2^m+a_3^m+\cdots=m\] for every positive integer $m?$

2015 Latvia Baltic Way TST, 1

Given real numbers $x$ and $y$, such that $$x^4 y^2 + y^4 + 2 x^3 y + 6 x^2 y + x^2 + 8 \le 0 .$$ Prove that $x \ge - \frac16$

2009 Today's Calculation Of Integral, 482

Let $ n$ be natural number. Find the limit value of ${ \lim_{n\to\infty} \frac{1}{n}(\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{5}}}+\cdots\cdots +\frac{n}{\sqrt{n^2+1}}).$

1997 China National Olympiad, 1

Let $x_1,x_2,\ldots ,x_{1997}$ be real numbers satisfying the following conditions: i) $-\dfrac{1}{\sqrt{3}}\le x_i\le \sqrt{3}$ for $i=1,2,\ldots ,1997$; ii) $x_1+x_2+\cdots +x_{1997}=-318 \sqrt{3}$ . Determine (with proof) the maximum value of $x^{12}_1+x^{12}_2+\ldots +x^{12}_{1997}$ .

2008 IMO Shortlist, 2

[b](a)[/b] Prove that \[\frac {x^{2}}{\left(x \minus{} 1\right)^{2}} \plus{} \frac {y^{2}}{\left(y \minus{} 1\right)^{2}} \plus{} \frac {z^{2}}{\left(z \minus{} 1\right)^{2}} \geq 1\] for all real numbers $x$, $y$, $z$, each different from $1$, and satisfying $xyz=1$. [b](b)[/b] Prove that equality holds above for infinitely many triples of rational numbers $x$, $y$, $z$, each different from $1$, and satisfying $xyz=1$. [i]Author: Walther Janous, Austria[/i]

1997 Balkan MO, 1

Suppose that $O$ is a point inside a convex quadrilateral $ABCD$ such that \[ OA^2 + OB^2 + OC^2 + OD^2 = 2\mathcal A[ABCD] , \] where by $\mathcal A[ABCD]$ we have denoted the area of $ABCD$. Prove that $ABCD$ is a square and $O$ is its center. [i]Yugoslavia[/i]