Found problems: 6530
1986 Bulgaria National Olympiad, Problem 6
Let $0<k<1$ be a given real number and let $(a_n)_{n\ge1}$ be an infinite sequence of real numbers which satisfies $a_{n+1}\le\left(1+\frac kn\right)a_n-1$. Prove that there is an index $t$ such that $a_t<0$.
2007 IMO Shortlist, 5
Let $ c > 2,$ and let $ a(1), a(2), \ldots$ be a sequence of nonnegative real numbers such that
\[ a(m \plus{} n) \leq 2 \cdot a(m) \plus{} 2 \cdot a(n) \text{ for all } m,n \geq 1,
\]
and $ a\left(2^k \right) \leq \frac {1}{(k \plus{} 1)^c} \text{ for all } k \geq 0.$ Prove that the sequence $ a(n)$ is bounded.
[i]Author: Vjekoslav Kovač, Croatia[/i]
1998 Estonia National Olympiad, 1
Prove that for any reals $a> b> c$, the inequality $a^2(b - c) + b^2(c - a) + c^2(a - b)> 0$.
2006 Junior Balkan Team Selection Tests - Romania, 3
Let $a,b,c>0$ be real numbers with sum 1. Prove that \[ \frac{a^2}b + \frac{b^2}c + \frac{c^2} a \geq 3(a^2+b^2+c^2) . \]
1976 IMO Shortlist, 3
In a convex quadrilateral (in the plane) with the area of $32 \text{ cm}^{2}$ the sum of two opposite sides and a diagonal is $16 \text{ cm}$. Determine all the possible values that the other diagonal can have.
2017 Saint Petersburg Mathematical Olympiad, 3
Given real numbers $x,y,z,t\in (0,\pi /2]$ such that
$$\cos^2 (x)+\cos^2 (y) +\cos^2 (z) +\cos^2 (t)=1.$$
What is the minimum possible value of $$\cot (x) +\cot (y) +\cot (z) +\cot (t)?$$
2006 German National Olympiad, 5
Let $x \neq 0$ be a real number satisfying $ax^2+bx+c=0$ with $a,b,c \in \mathbb{Z}$ obeying $|a|+|b|+|c| > 1$. Then prove \[ |x| \geq \frac{1}{|a|+|b|+|c|-1}. \]
1992 Hungary-Israel Binational, 1
Prove that if $c$ is a positive number distinct from $1$ and $n$ a positive integer, then
\[n^{2}\leq \frac{c^{n}+c^{-n}-2}{c+c^{-1}-2}. \]
1984 IMO Shortlist, 20
Determine all pairs $(a, b)$ of positive real numbers with $a \neq 1$ such that
\[\log_a b < \log_{a+1} (b + 1).\]
2013 Putnam, 6
Define a function $w:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ as follows. For $|a|,|b|\le 2,$ let $w(a,b)$ be as in the table shown; otherwise, let $w(a,b)=0.$
\[\begin{array}{|lr|rrrrr|}\hline &&&&b&&\\
&w(a,b)&-2&-1&0&1&2\\ \hline
&-2&-1&-2&2&-2&-1\\
&-1&-2&4&-4&4&-2\\
a&0&2&-4&12&-4&2\\
&1&-2&4&-4&4&-2\\
&2&-1&-2&2&-2&-1\\ \hline\end{array}\]
For every finite subset $S$ of $\mathbb{Z}\times\mathbb{Z},$ define \[A(S)=\sum_{(\mathbf{s},\mathbf{s'})\in S\times S} w(\mathbf{s}-\mathbf{s'}).\] Prove that if $S$ is any finite nonempty subset of $\mathbb{Z}\times\mathbb{Z},$ then $A(S)>0.$ (For example, if $S=\{(0,1),(0,2),(2,0),(3,1)\},$ then the terms in $A(S)$ are $12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4.$)
2002 Silk Road, 2
I tried to search SRMC problems,but i didn't find them(I found only SRMC 2006).Maybe someone know where on this site i could find SRMC problems?I have all SRMC problems,if someone want i could post them, :wink:
Here is one of them,this is one nice inequality from first SRMC:
Let $ n$ be an integer with $ n>2$ and $ a_{1},a_{2},\dots,a_{n}\in R^{\plus{}}$.Given any positive integers $ t,k,p$ with $ 1<t<n$,set $ m\equal{}k\plus{}p$,prove the following inequalities:
a)
$ \frac{a_{1}^{p}}{a_{2}^{k}\plus{}a_{3}^{k}\plus{}\dots\plus{}a_{t}^{k}}\plus{}\frac{a_{2}^{p}}{a_{3}^{k}\plus{}a_{4}^{k}\plus{}\dots\plus{}a_{t\plus{}1}^{k}}\plus{}\dots\plus{}\frac{a_{n\minus{}1}^{p}}{a_{n}^{k}\plus{}a_{1}^{k}\plus{}\dots\plus{}a_{t\minus{}2}^{k}}\plus{}\frac{a_{n}^{p}}{a_{1}^{k}\plus{}a_{2}^{k}\plus{}\dots\plus{}a_{t\minus{}1}^{k}}\geq\frac{(a_{1}^{p}\plus{}a_{2}^{p}\dots\plus{}a_{n}^{p})^{2}}{(t\minus{}1) ( a_{1}^{m}\plus{}a_{2}^{m}\plus{}\dots\plus{}a_{n}^{m})}$
b)$ \frac{a_{2}^{k}\plus{}a_{3}^{k}\dots\plus{}a_{t}^{k}}{a_{1}^{p}}\plus{}\frac{a_{3}^{k}\plus{}a_{4}^{k}\dots\plus{}a_{t\plus{}1}^{k}}{a_{2}^{p}}\plus{}\dots\plus{}\frac{a_{1}^{k}\plus{}a_{2}^{k}\dots\plus{}a_{t\minus{}1}^{k}}{a_{n}^{p}}\geq\frac{(t\minus{}1)(a_{1}^{k}\plus{}a_{2}^{k}\dots\plus{}a_{n}^{k})^{2}}{( a_{1}^{m}\plus{}a_{2}^{m}\plus{}\dots\plus{}a_{n}^{m})}$ :wink:
1960 AMC 12/AHSME, 26
Find the set of $x$-values satisfying the inequality $|\frac{5-x}{3}|<2$. [The symbol $|a|$ means $+a$ if $a$ is positive, $-a$ if $a$ is negative, 0 if $a$ is zero. The notation $1<a<2$ means that $a$ can have any value between $1$ and $2$, excluding $1$ and $2$. ]
$ \textbf{(A)}\ 1 < x < 11\qquad\textbf{(B)}\ -1 < x < 11\qquad\textbf{(C)}\ x< 11\qquad$
$\textbf{(D)}\ x>11\qquad\textbf{(E)}\ |x| < 6 $
1980 Vietnam National Olympiad, 1
Let $\alpha_{1}, \alpha_{2}, \cdots , \alpha_{n}$ be numbers in the interval $[0, 2\pi]$ such that the number $\displaystyle\sum_{i=1}^n (1 + \cos \alpha_{i})$ is an odd integer. Prove that
\[\displaystyle\sum_{i=1}^n \sin \alpha_i \ge 1\]
2010 Puerto Rico Team Selection Test, 4
Find the largest possible value in the real numbers of the term $$\frac{3x^2 + 16xy + 15y^2}{x^2 + y^2}$$ with $x^2 + y^2 \ne 0$.
1985 Austrian-Polish Competition, 7
Find an upper bound for the ratio
$$\frac{x_1x_2+2x_2x_3+x_3x_4}{x_1^2+x_2^2+x_3^2+x_4^2}$$
over all quadruples of real numbers $(x_1,x_2,x_3,x_4)\neq (0,0,0,0)$.
[i]Note.[/i] The smaller the bound, the better the solution.
MathLinks Contest 3rd, 1
Let $a, b, c$ be positive reals. Prove that $$\sqrt{abc}(\sqrt{a} +\sqrt{b} +\sqrt{c}) + (a + b + c)^2 \ge 4 \sqrt{3abc(a + b + c)}.$$
2018 Cyprus IMO TST, 3
Find all triples $(\alpha, \beta, \gamma)$ of positive real numbers for which the expression
$$K = \frac{\alpha+3 \gamma}{\alpha + 2\beta + \gamma} + \frac{4\beta}{\alpha+\beta+2\gamma} - \frac{8 \gamma}{\alpha+ \beta + 3\gamma}$$
obtains its minimum value.
2009 Indonesia TST, 3
Let $ x,y,z$ be real numbers. Find the minimum value of $ x^2\plus{}y^2\plus{}z^2$ if $ x^3\plus{}y^3\plus{}z^3\minus{}3xyz\equal{}1$.
2017 China Second Round Olympiad, 10
Let $x_1,x_2,x_3\geq 0$ and $x_1+x_2+x_3=1$. Find the minimum value and the maximum value of $(x_1+3x_2+5x_3)\left(x_1+\frac{x_2}{3}+\frac{x_3}{5}\right).$
2010 Czech-Polish-Slovak Match, 3
Let $ABCD$ be a convex quadrilateral for which \[ AB+CD=\sqrt{2}\cdot AC\qquad\text{and}\qquad BC+DA=\sqrt{2}\cdot BD.\] Prove that $ABCD$ is a parallelogram.
1970 IMO Longlists, 36
Let $x, y, z$ be non-negative real numbers satisfying
\[x^2 + y^2 + z^2 = 5 \quad \text{ and } \quad yz + zx + xy = 2.\]
Which values can the greatest of the numbers $x^2 -yz, y^2 - xz$ and $z^2 - xy$ have?
2011 IFYM, Sozopol, 6
Define a sequence {$a_n$}$^{\infty}_{n=1}$ by $a_1 = 4, a_2 = a_3 = (a^2 - 2)^2$ and
$a_n = a_{n-1}.a_{n-2} - 2(a_{n-1} + a_{n-2}) - a_{n-3} + 8, n \ge 4$, where $a > 2$ is a natural number.
Prove that for all $n$ the number $2 + \sqrt{a_n}$ is a perfect square.
2015 China Team Selection Test, 1
Let $x_1,x_2,\cdots,x_n$ $(n\geq2)$ be a non-decreasing monotonous sequence of positive numbers such that $x_1,\frac{x_2}{2},\cdots,\frac{x_n}{n}$ is a non-increasing monotonous sequence .Prove that
\[ \frac{\sum_{i=1}^{n} x_i }{n\left (\prod_{i=1}^{n}x_i \right )^{\frac{1}{n}}}\le \frac{n+1}{2\sqrt[n]{n!}}\]
2012 AMC 10, 8
What is the sum of all integer solutions to $1<(x-2)^2<25$?
$ \textbf{(A)}\ 10\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 19\qquad\textbf{(E)}\ 25 $
2012 IFYM, Sozopol, 4
In the right-angled $\Delta ABC$, with area $S$, a circle with area $S_1$ is inscribed and a circle with area $S_2$ is circumscribed. Prove the following inequality:
$\pi \frac{S-S_1}{S_2} <\frac{1}{\pi-1}$.