This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 325

1957 AMC 12/AHSME, 7

The area of a circle inscribed in an equilateral triangle is $ 48\pi$. The perimeter of this triangle is: $ \textbf{(A)}\ 72\sqrt{3} \qquad \textbf{(B)}\ 48\sqrt{3}\qquad \textbf{(C)}\ 36\qquad \textbf{(D)}\ 24\qquad \textbf{(E)}\ 72$

2008 Thailand Mathematical Olympiad, 2

Let $AD$ be the common chord of two equal-sized circles $O_1$ and $O_2$. Let $B$ and $C$ be points on $O_1$ and $O_2$, respectively, so that $D$ lies on the segment $BC$. Assume that $AB = 15, AD = 13$ and $BC = 18$, what is the ratio between the inradii of $\vartriangle ABD$ and $\vartriangle ACD$?

1965 German National Olympiad, 4

Find the locus of points in the plane, the sum of whose distances from the sides of a regular polygon is five times the inradius of the pentagon.

1935 Moscow Mathematical Olympiad, 008

Prove that if the lengths of the sides of a triangle form an arithmetic progression, then the radius of the inscribed circle is one third of one of the heights of the triangle.

2006 Germany Team Selection Test, 2

Tags: geometry , inradius
The lengths of the altitudes of a triangle are positive integers, and the length of the radius of the incircle is a prime number. Find the lengths of the sides of the triangle.

2016 India IMO Training Camp, 1

Let $ABC$ be an acute triangle with circumcircle $\Gamma$. Let $A_1,B_1$ and $C_1$ be respectively the midpoints of the arcs $BAC,CBA$ and $ACB$ of $\Gamma$. Show that the inradius of triangle $A_1B_1C_1$ is not less than the inradius of triangle $ABC$.

2008 Kazakhstan National Olympiad, 2

Let $ \triangle ABC$ be a triangle and let $ K$ be some point on the side $ AB$, so that the tangent line from $ K$ to the incircle of $ \triangle ABC$ intersects the ray $ AC$ at $ L$. Assume that $ \omega$ is tangent to sides $ AB$ and $ AC$, and to the circumcircle of $ \triangle AKL$. Prove that $ \omega$ is tangent to the circumcircle of $ \triangle ABC$ as well.

2000 China National Olympiad, 1

The sides $a,b,c$ of triangle $ABC$ satisfy $a\le b\le c$. The circumradius and inradius of triangle $ABC$ are $R$ and $r$ respectively. Let $f=a+b-2R-2r$. Determine the sign of $f$ by the measure of angle $C$.

2007 AMC 12/AHSME, 23

How many non-congruent right triangles with positive integer leg lengths have areas that are numerically equal to $ 3$ times their perimeters? $ \textbf{(A)}\ 6 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 12$

Indonesia MO Shortlist - geometry, g6.7

Tags: ratio , inradius , geometry
Given triangle $ ABC$ with sidelengths $ a,b,c$. Tangents to incircle of $ ABC$ that parallel with triangle's sides form three small triangle (each small triangle has 1 vertex of $ ABC$). Prove that the sum of area of incircles of these three small triangles and the area of incircle of triangle $ ABC$ is equal to $ \frac{\pi (a^{2}\plus{}b^{2}\plus{}c^{2})(b\plus{}c\minus{}a)(c\plus{}a\minus{}b)(a\plus{}b\minus{}c)}{(a\plus{}b\plus{}c)^{3}}$ (hmm,, looks familiar, isn't it? :wink: )

2019 Yasinsky Geometry Olympiad, p1

It is known that in the triangle $ABC$ the distance from the intersection point of the angle bisector to each of the vertices of the triangle does not exceed the diameter of the circle inscribed in this triangle. Find the angles of the triangle $ABC$. (Grigory Filippovsky)

2009 Harvard-MIT Mathematics Tournament, 6

Let $ABC$ be a triangle in the coordinate plane with vertices on lattice points and with $AB = 1$. Suppose the perimeter of $ABC$ is less than $17$. Find the largest possible value of $1/r$, where $r$ is the inradius of $ABC$.

2012 AMC 12/AHSME, 18

Triangle $ABC$ has $AB=27$, $AC=26$, and $BC=25$. Let $I$ denote the intersection of the internal angle bisectors of $\triangle ABC$. What is $BI$? $ \textbf{(A)}\ 15\qquad\textbf{(B)}\ 5+\sqrt{26}+3\sqrt{3}\qquad\textbf{(C)}\ 3\sqrt{26}\qquad\textbf{(D)}\ \frac{2}{3}\sqrt{546}\qquad\textbf{(E)}\ 9\sqrt{3} $

2012 Centers of Excellency of Suceava, 3

Prove that the sum of the squares of the medians of a triangle is at least $ 9/4 $ if the circumradius of the triangle, the area of the triangle and the inradius of the triangle (in this order) are in arithmetic progression. [i]Dumitru Crăciun[/i]

1993 Italy TST, 3

Let $ABC$ be an isosceles triangle with base $AB$ and $D$ be a point on side $AB$ such that the incircle of triangle $ACD$ is congruent to the excircle of triangle $DCB$ across $C$. Prove that the diameter of each of these circles equals half the altitude of $\vartriangle ABC$ from $A$

2001 India IMO Training Camp, 3

Tags: inradius , geometry
Points $B = B_1 , B_2, \cdots , B_n , B_{n+1} = C$ are chosen on side $BC$ of a triangle $ABC$ in that order. Let $r_j$ be the inradius of triangle $AB_jB_{j+1}$ for $j = 1, \cdots, n$ , and $r$ be the inradius of $\triangle ABC$. Show that there is a constant $\lambda$ independent of $n$ such that : \[(\lambda -r_1)(\lambda -r_2)\cdots (\lambda -r_n) =\lambda^{n-1}(\lambda -r)\]

2005 Canada National Olympiad, 4

Let $ ABC$ be a triangle with circumradius $ R$, perimeter $ P$ and area $ K$. Determine the maximum value of: $ \frac{KP}{R^3}$.

1964 IMO Shortlist, 3

A circle is inscribed in a triangle $ABC$ with sides $a,b,c$. Tangents to the circle parallel to the sides of the triangle are contructe. Each of these tangents cuts off a triagnle from $\triangle ABC$. In each of these triangles, a circle is inscribed. Find the sum of the areas of all four inscribed circles (in terms of $a,b,c$).

2006 India Regional Mathematical Olympiad, 5

Tags: inradius , geometry
Let $ ABCD$ be a quadrilateral in which $ AB$ is parallel to $ CD$ and perpendicular to $ AD; AB \equal{} 3CD;$ and the area of the quadrilateral is $ 4$. if a circle can be drawn touching all the four sides of the quadrilateral, find its radius.

2004 Nordic, 4

Let $a, b, c$ be the sides and $R$ be the circumradius of a triangle. Prove that \[\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{R^2}.\]

2005 Turkey MO (2nd round), 5

If $a,b,c$ are the sides of a triangle and $r$ the inradius of the triangle, prove that \[\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le \frac{1}{4r^2} \]

1952 Moscow Mathematical Olympiad, 215

$\vartriangle ABC$ is divided by a straight line $BD$ into two triangles. Prove that the sum of the radii of circles inscribed in triangles $ABD$ and $DBC$ is greater than the radius of the circle inscribed in $\vartriangle ABC$.

2001 India IMO Training Camp, 1

Let $ABCD$ be a rectangle, and let $\omega$ be a circular arc passing through the points $A$ and $C$. Let $\omega_{1}$ be the circle tangent to the lines $CD$ and $DA$ and to the circle $\omega$, and lying completely inside the rectangle $ABCD$. Similiarly let $\omega_{2}$ be the circle tangent to the lines $AB$ and $BC$ and to the circle $\omega$, and lying completely inside the rectangle $ABCD$. Denote by $r_{1}$ and $r_{2}$ the radii of the circles $\omega_{1}$ and $\omega_{2}$, respectively, and by $r$ the inradius of triangle $ABC$. [b](a)[/b] Prove that $r_{1}+r_{2}=2r$. [b](b)[/b] Prove that one of the two common internal tangents of the two circles $\omega_{1}$ and $\omega_{2}$ is parallel to the line $AC$ and has the length $\left|AB-AC\right|$.

2011 Laurențiu Duican, 3

Prove that for a triangle $ ABC $ with $ \angle BAC \ge 90^{\circ } , $ having circumradius $ R $ and inradius $ r, $ the following inequality holds: $$ R\sin A>2r $$ [i]Romeo Ilie[/i]

2007 USAMO, 6

Let $ABC$ be an acute triangle with $\omega,S$, and $R$ being its incircle, circumcircle, and circumradius, respectively. Circle $\omega_{A}$ is tangent internally to $S$ at $A$ and tangent externally to $\omega$. Circle $S_{A}$ is tangent internally to $S$ at $A$ and tangent internally to $\omega$. Let $P_{A}$ and $Q_{A}$ denote the centers of $\omega_{A}$ and $S_{A}$, respectively. Define points $P_{B}, Q_{B}, P_{C}, Q_{C}$ analogously. Prove that \[8P_{A}Q_{A}\cdot P_{B}Q_{B}\cdot P_{C}Q_{C}\leq R^{3}\; , \] with equality if and only if triangle $ABC$ is equilateral.