This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 325

2024 AMC 12/AHSME, 24

Tags: geometry , inradius
What is the number of ordered triples $(a,b,c)$ of positive integers, with $a\le b\le c\le 9$, such that there exists a (non-degenerate) triangle $\triangle ABC$ with an integer inradius for which $a$, $b$, and $c$ are the lengths of the altitudes from $A$ to $\overline{BC}$, $B$ to $\overline{AC}$, and $C$ to $\overline{AB}$, respectively? (Recall that the inradius of a triangle is the radius of the largest possible circle that can be inscribed in the triangle.) $ \textbf{(A) }2\qquad \textbf{(B) }3\qquad \textbf{(C) }4\qquad \textbf{(D) }5\qquad \textbf{(E) }6\qquad $

2010 Korea National Olympiad, 3

Let $ I $ be the incenter of triangle $ ABC $. The incircle touches $ BC, CA, AB$ at points $ P, Q, R $. A circle passing through $ B , C $ is tangent to the circle $I$ at point $ X $, a circle passing through $ C , A $ is tangent to the circle $I$ at point $ Y $, and a circle passing through $ A , B $ is tangent to the circle $I$ at point $ Z $, respectively. Prove that three lines $ PX, QY, RZ $ are concurrent.

2003 Korea - Final Round, 1

Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively. Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.

2005 District Olympiad, 2

Let $ABC$ be a triangle inscribed in a circle of center $O$ and radius $R$. Let $I$ be the incenter of $ABC$, and let $r$ be the inradius of the same triangle, $O\neq I$, and let $G$ be its centroid. Prove that $IG\perp BC$ if and only if $b=c$ or $b+c=3a$.

2011 Laurențiu Duican, 3

Prove that for a triangle $ ABC $ with $ \angle BAC \ge 90^{\circ } , $ having circumradius $ R $ and inradius $ r, $ the following inequality holds: $$ R\sin A>2r $$ [i]Romeo Ilie[/i]

1980 Canada National Olympiad, 3

Among all triangles having (i) a fixed angle $A$ and (ii) an inscribed circle of fixed radius $r$, determine which triangle has the least minimum perimeter.

2005 Romania Team Selection Test, 2

Let $ABC$ be a triangle, and let $D$, $E$, $F$ be 3 points on the sides $BC$, $CA$ and $AB$ respectively, such that the inradii of the triangles $AEF$, $BDF$ and $CDE$ are equal with half of the inradius of the triangle $ABC$. Prove that $D$, $E$, $F$ are the midpoints of the sides of the triangle $ABC$.

2008 ITest, 32

A right triangle has perimeter $2008$, and the area of a circle inscribed in the triangle is $100\pi^3$. Let $A$ be the area of the triangle. Compute $\lfloor A\rfloor$.

2000 USAMO, 2

Let $S$ be the set of all triangles $ABC$ for which \[ 5 \left( \dfrac{1}{AP} + \dfrac{1}{BQ} + \dfrac{1}{CR} \right) - \dfrac{3}{\min\{ AP, BQ, CR \}} = \dfrac{6}{r}, \] where $r$ is the inradius and $P, Q, R$ are the points of tangency of the incircle with sides $AB, BC, CA,$ respectively. Prove that all triangles in $S$ are isosceles and similar to one another.

2010 Contests, 3

Let $A'\in(BC),$ $B'\in(CA),C'\in(AB)$ be the points of tangency of the excribed circles of triangle $\triangle ABC$ with the sides of $\triangle ABC.$ Let $R'$ be the circumradius of triangle $\triangle A'B'C'.$ Show that \[ R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)}\] where as usual, $R$ is the circumradius of $\triangle ABC,$ r is the inradius of $\triangle ABC,$ and $h_{a},h_{b},h_{c}$ are the lengths of altitudes of $\triangle ABC.$

2020-21 KVS IOQM India, 22

Let $ABC$ be a triangle with $\angle BAC = 90^o$ and $D$ be the point on the side $BC$ such that $AD \perp BC$. Let$ r, r_1$, and $r_2$ be the inradii of triangles $ABC, ABD$, and $ACD$, respectively. If $r, r_1$, and $r_2$ are positive integers and one of them is $5$, find the largest possible value of $r+r_1+ r_2$.

2001 India IMO Training Camp, 1

Let $ABCD$ be a rectangle, and let $\omega$ be a circular arc passing through the points $A$ and $C$. Let $\omega_{1}$ be the circle tangent to the lines $CD$ and $DA$ and to the circle $\omega$, and lying completely inside the rectangle $ABCD$. Similiarly let $\omega_{2}$ be the circle tangent to the lines $AB$ and $BC$ and to the circle $\omega$, and lying completely inside the rectangle $ABCD$. Denote by $r_{1}$ and $r_{2}$ the radii of the circles $\omega_{1}$ and $\omega_{2}$, respectively, and by $r$ the inradius of triangle $ABC$. [b](a)[/b] Prove that $r_{1}+r_{2}=2r$. [b](b)[/b] Prove that one of the two common internal tangents of the two circles $\omega_{1}$ and $\omega_{2}$ is parallel to the line $AC$ and has the length $\left|AB-AC\right|$.

2005 Italy TST, 2

$(a)$ Prove that in a triangle the sum of the distances from the centroid to the sides is not less than three times the inradius, and find the cases of equality. $(b)$ Determine the points in a triangle that minimize the sum of the distances to the sides.

2017 Bosnia Herzegovina Team Selection Test, 1

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.

2000 National Olympiad First Round, 1

If the incircle of a right triangle with area $a$ is the circumcircle of a right triangle with area $b$, what is the minimum value of $\frac{a}{b}$? $ \textbf{(A)}\ 3 + 2\sqrt2 \qquad\textbf{(B)}\ 1+\sqrt2 \qquad\textbf{(C)}\ 2\sqrt2 \qquad\textbf{(D)}\ 2+\sqrt3 \qquad\textbf{(E)}\ 2\sqrt3$

1960 IMO, 6

Consider a cone of revolution with an inscribed sphere tangent to the base of the cone. A cylinder is circumscribed about this sphere so that one of its bases lies in the base of the cone. let $V_1$ be the volume of the cone and $V_2$ be the volume of the cylinder. a) Prove that $V_1 \neq V_2$; b) Find the smallest number $k$ for which $V_1=kV_2$; for this case, construct the angle subtended by a diamter of the base of the cone at the vertex of the cone.

2001 India IMO Training Camp, 3

Tags: inradius , geometry
Points $B = B_1 , B_2, \cdots , B_n , B_{n+1} = C$ are chosen on side $BC$ of a triangle $ABC$ in that order. Let $r_j$ be the inradius of triangle $AB_jB_{j+1}$ for $j = 1, \cdots, n$ , and $r$ be the inradius of $\triangle ABC$. Show that there is a constant $\lambda$ independent of $n$ such that : \[(\lambda -r_1)(\lambda -r_2)\cdots (\lambda -r_n) =\lambda^{n-1}(\lambda -r)\]

1993 Italy TST, 3

Let $ABC$ be an isosceles triangle with base $AB$ and $D$ be a point on side $AB$ such that the incircle of triangle $ACD$ is congruent to the excircle of triangle $DCB$ across $C$. Prove that the diameter of each of these circles equals half the altitude of $\vartriangle ABC$ from $A$

Kvant 2021, M2648

Tags: geometry , inradius
The triangle $ABC$ is given. Consider the point $C'{}$ on the side $AB$ such that the segment $CC'$ divides the triangle into two triangles with equal radii of inscribed circles. Denote by $t_c$ the length of the segment $CC'$. Similarly, we define $t_a$ and $t_b$. Express the area of triangle $ABC$ in terms of $t_a,t_b$ and $t_c$. [i]Proposed by K. Mosevich[/i]

2017 QEDMO 15th, 10

Let $\ell$ be a straight line and $P \notin \ell$ be a point in the plane. On $\ell$ are, in this arrangement, points $A_1, A_2,...$ such that the radii of the incircles of all triangles $P A_iA_{i + 1}$ are equal. Let $k \in N$. Show that the radius of the incircle of the triangle $P A_j A_{j + k}$ does not depend on the choice of $j \in N$ .

2005 Canada National Olympiad, 4

Let $ ABC$ be a triangle with circumradius $ R$, perimeter $ P$ and area $ K$. Determine the maximum value of: $ \frac{KP}{R^3}$.

2014 Online Math Open Problems, 14

Let $ABC$ be a triangle with incenter $I$ and $AB = 1400$, $AC = 1800$, $BC = 2014$. The circle centered at $I$ passing through $A$ intersects line $BC$ at two points $X$ and $Y$. Compute the length $XY$. [i]Proposed by Evan Chen[/i]

1954 AMC 12/AHSME, 43

The hypotenuse of a right triangle is $ 10$ inches and the radius of the inscribed circle is $ 1$ inch. The perimeter of the triangle in inches is: $ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 22 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 26 \qquad \textbf{(E)}\ 30$

1999 India Regional Mathematical Olympiad, 1

Tags: geometry , inradius
Prove that the inradius of a right angled triangle with integer sides is an integer.

1992 IMO Longlists, 66

A circle of radius $\rho$ is tangent to the sides $AB$ and $AC$ of the triangle $ABC$, and its center $K$ is at a distance $p$ from $BC$. [i](a)[/i] Prove that $a(p - \rho) = 2s(r - \rho)$, where $r$ is the inradius and $2s$ the perimeter of $ABC$. [i](b)[/i] Prove that if the circle intersect $BC$ at $D$ and $E$, then \[DE=\frac{4\sqrt{rr_1(\rho-r)(r_1-\rho)}}{r_1-r}\] where $r_1$ is the exradius corresponding to the vertex $A.$