This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2009 Iran MO (2nd Round), 3

$11$ people are sitting around a circle table, orderly (means that the distance between two adjacent persons is equal to others) and $11$ cards with numbers $1$ to $11$ are given to them. Some may have no card and some may have more than $1$ card. In each round, one [and only one] can give one of his cards with number $ i $ to his adjacent person if after and before the round, the locations of the cards with numbers $ i-1,i,i+1 $ don’t make an acute-angled triangle. (Card with number $0$ means the card with number $11$ and card with number $12$ means the card with number $1$!) Suppose that the cards are given to the persons regularly clockwise. (Mean that the number of the cards in the clockwise direction is increasing.) Prove that the cards can’t be gathered at one person.

Today's calculation of integrals, 765

Define two functions $g(x),\ f(x)\ (x\geq 0)$ by $g(x)=\int_0^x e^{-t^2}dt,\ f(x)=\int_0^1 \frac{e^{-(1+s^2)x}}{1+s^2}ds.$ Now we know that $f'(x)=-\int_0^1 e^{-(1+s^2)x}ds.$ (1) Find $f(0).$ (2) Show that $f(x)\leq \frac{\pi}{4}e^{-x}\ (x\geq 0).$ (3) Let $h(x)=\{g(\sqrt{x})\}^2$. Show that $f'(x)=-h'(x).$ (4) Find $\lim_{x\rightarrow +\infty} g(x)$ Please solve the problem without using Double Integral or Jacobian for those Japanese High School Students who don't study them.

2009 Today's Calculation Of Integral, 482

Let $ n$ be natural number. Find the limit value of ${ \lim_{n\to\infty} \frac{1}{n}(\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{5}}}+\cdots\cdots +\frac{n}{\sqrt{n^2+1}}).$

2014 BMT Spring, 9

Find $\alpha$ such that $$\lim_{x\to0^+}x^\alpha I(x)=a\enspace\text{given}\enspace I(x)=\int^\infty_0\sqrt{1+t}\cdot e^{-xt}dt$$ where $a$ is a nonzero real number.

2010 Today's Calculation Of Integral, 581

For real numer $ c$ for which $ cx^2\geq \ln (1\plus{}x^2)$ for all real numbers $ x$, find the value of $ c$ such that the area of the figure bounded by two curves $ y\equal{}cx^2$ and $ y\equal{}\ln (1\plus{}x^2)$ and two lines $ x\equal{}1,\ x\equal{}\minus{}1$ is 4.

2010 Tuymaada Olympiad, 1

We have a set $M$ of real numbers with $|M|>1$ such that for any $x\in M$ we have either $3x-2\in M$ or $-4x+5\in M$. Show that $M$ is infinite.

2012 Today's Calculation Of Integral, 775

Let $a$ be negative constant. Find the value of $a$ and $f(x)$ such that $\int_{\frac{a}{2}}^{\frac{t}{2}} f(x)dx=t^2+3t-4$ holds for any real numbers $t$.

Today's calculation of integrals, 899

Find the limit as below. \[\lim_{n\to\infty} \frac{(1^2+2^2+\cdots +n^2)(1^3+2^3+\cdots +n^3)(1^4+2^4+\cdots +n^4)}{(1^5+2^5+\cdots +n^5)^2}\]

2010 Today's Calculation Of Integral, 539

Evaluate $ \int_0^{\frac{\pi}{4}} \frac{\sin ^ 2 x}{\cos ^ 3 x}\ dx$.

2009 Putnam, B5

Let $ f: (1,\infty)\to\mathbb{R}$ be a differentiable function such that \[ f'(x)\equal{}\frac{x^2\minus{}\left(f(x)\right)^2}{x^2\left(\left(f(x)\right)^2\plus{}1\right)}\quad\text{for all }x>1.\] Prove that $ \displaystyle\lim_{x\to\infty}f(x)\equal{}\infty.$

2011 Harvard-MIT Mathematics Tournament, 3

Evaluate $\displaystyle \int_1^\infty \left(\frac{\ln x}{x}\right)^{2011} dx$.

2009 Today's Calculation Of Integral, 412

Let the definite integral $ I_n\equal{}\int_0^{\frac{\pi}{4}} \frac{dx}{(\cos x)^n}\ (n\equal{}0,\ \pm 1,\ \pm 2,\ \cdots )$. (1) Find $ I_0,\ I_{\minus{}1},\ I_2$. (2) Find $ I_1$. (3) Express $ I_{n\plus{}2}$ in terms of $ I_n$. (4) Find $ I_{\minus{}3},\ I_{\minus{}2},\ I_3$. (5) Evaluate the definite integrals $ \int_0^1 \sqrt{x^2\plus{}1}\ dx,\ \int_0^1 \frac{dx}{(x^2\plus{}1)^2}\ dx$ in using the avobe results. You are not allowed to use the formula of integral for $ \sqrt{x^2\plus{}1}$ directively here.

2012 Today's Calculation Of Integral, 793

Find the area of the figure bounded by two curves $y=x^4,\ y=x^2+2$.

2005 Today's Calculation Of Integral, 4

Calculate the following indefinite integrals. [1] $\int \frac{x}{\sqrt{5-x}}dx$ [2] $\int \frac{\sin x \cos ^2 x}{1+\cos x}dx$ [3] $\int (\sin x+\cos x)^2dx$ [4] $\int \frac{x-\cos ^2 x}{x\cos^ 2 x}dx$ [5]$\int (\sin x+\sin 2x)^2 dx$

2014 BMT Spring, 19

Evaluate the integral $\int_0^{\pi/2} \sqrt{\tan \theta} d\theta$.

2019 Jozsef Wildt International Math Competition, W. 29

Prove that $$\int \limits_0^{\infty} e^{3t}\frac{4e^{4t}(3t - 1) + 2e^{2t}(15t - 17) + 18(1 - t)}{\left(1 + e^{4t} - e^{2t}\right)^2}=12\sum \limits_{k=0}^{\infty}\frac{(-1)^k}{(2k + 1)^2}-10$$

2005 Putnam, B6

Let $S_n$ denote the set of all permutations of the numbers $1,2,\dots,n.$ For $\pi\in S_n,$ let $\sigma(\pi)=1$ if $\pi$ is an even permutation and $\sigma(\pi)=-1$ if $\pi$ is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of $\pi.$ Show that \[ \sum_{\pi\in S_n}\frac{\sigma(\pi)}{v(\pi)+1}=(-1)^{n+1}\frac{n}{n+1}. \]

2011 ISI B.Stat Entrance Exam, 4

Let $f$ be a twice differentiable function on the open interval $(-1,1)$ such that $f(0)=1$. Suppose $f$ also satisfies $f(x) \ge 0, f'(x) \le 0$ and $f''(x) \le f(x)$, for all $x\ge 0$. Show that $f'(0) \ge -\sqrt2$.

2005 AMC 10, 14

How many three-digit numbers satisfy the property that the middle digit is the average of the first and the last digits? $ \textbf{(A)}\ 41\qquad \textbf{(B)}\ 42\qquad \textbf{(C)}\ 43\qquad \textbf{(D)}\ 44\qquad \textbf{(E)}\ 45$

1991 Arnold's Trivium, 17

Find the distance of the centre of gravity of a uniform $100$-dimensional solid hemisphere of radius $1$ from the centre of the sphere with $10\%$ relative error.

2005 Today's Calculation Of Integral, 6

Calculate the following indefinite integrals. [1] $\int \sin x\cos ^ 3 x dx$ [2] $\int \frac{dx}{(1+\sqrt{x})\sqrt{x}}dx$ [3] $\int x^2 \sqrt{x^3+1}dx$ [4] $\int \frac{e^{2x}-3e^{x}}{e^x}dx$ [5] $\int (1-x^2)e^x dx$

1960 AMC 12/AHSME, 11

For a given value of $k$ the product of the roots of \[ x^2-3kx+2k^2-1=0 \] is $7$. The roots may be characterized as: $ \textbf{(A) }\text{integral and positive} \qquad\textbf{(B) }\text{integral and negative} \qquad$ $\textbf{(C) }\text{rational, but not integral} \qquad\textbf{(D) }\text{irrational} \qquad\textbf{(E) } \text{imaginary} $

2022 CMIMC Integration Bee, 5

\[\int \frac{1}{(1+x)\sqrt{x}}\,\mathrm dx\] [i]Proposed by Connor Gordon[/i]

2011 Tokyo Instutute Of Technology Entrance Examination, 1

Consider a curve $C$ on the $x$-$y$ plane expressed by $x=\tan \theta ,\ y=\frac{1}{\cos \theta}\left (0\leq \theta <\frac{\pi}{2}\right)$. For a constant $t>0$, let the line $l$ pass through the point $P(t,\ 0)$ and is perpendicular to the $x$-axis,intersects with the curve $C$ at $Q$. Denote by $S_1$ the area of the figure bounded by the curve $C$, the $x$-axis, the $y$-axis and the line $l$, and denote by $S_2$ the area of $\triangle{OPQ}$. Find $\lim_{t\to\infty} \frac{S_1-S_2}{\ln t}.$