This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2005 Today's Calculation Of Integral, 90

Find $\lim_{n\to\infty} \left(\frac{_{3n}C_n}{_{2n}C_n}\right)^{\frac{1}{n}}$ where $_iC_j$ is a binominal coefficient which means $\frac{i\cdot (i-1)\cdots(i-j+1)}{j\cdot (j-1)\cdots 2\cdot 1}$.

2010 Today's Calculation Of Integral, 620

Let $a,\ b$ be real numbers. Suppose that a function $f(x)$ satisfies $f(x)=a\sin x+b\cos x+\int_{-\pi}^{\pi} f(t)\cos t\ dt$ and has the maximum value $2\pi$ for $-\pi \leq x\leq \pi$. Find the minimum value of $\int_{-\pi}^{\pi} \{f(x)\}^2dx.$ [i]2010 Chiba University entrance exam[/i]

2003 Vietnam Team Selection Test, 3

Let $f(0, 0) = 5^{2003}, f(0, n) = 0$ for every integer $n \neq 0$ and \[\begin{array}{c}\ f(m, n) = f(m-1, n) - 2 \cdot \Bigg\lfloor \frac{f(m-1, n)}{2}\Bigg\rfloor + \Bigg\lfloor\frac{f(m-1, n-1)}{2}\Bigg\rfloor + \Bigg\lfloor\frac{f(m-1, n+1)}{2}\Bigg\rfloor \end{array}\] for every natural number $m > 0$ and for every integer $n$. Prove that there exists a positive integer $M$ such that $f(M, n) = 1$ for all integers $n$ such that $|n| \leq \frac{(5^{2003}-1)}{2}$ and $f(M, n) = 0$ for all integers n such that $|n| > \frac{5^{2003}-1}{2}.$

2002 District Olympiad, 4

Let be a continuous and periodic function $ f:\mathbb{R}\longrightarrow [0,\infty ) $ of period $ 1. $ Show: [b]a)[/b] $ a\in\mathbb{R}\implies\int_a^{a+1} f(x)dx =\int_0^1 f(x) dx . $ [b]b)[/b] $ \lim_{n\to\infty} \int_0^1 f(x)f(nx) dx=\left( \int_0^1 f(x) dx \right)^2 . $ [i]C. Mortici[/i]

2004 Unirea, 4

Let be the sequence $ \left( I_n \right)_{n\ge 1} $ defined as $ I_n=\int_0^{\pi } \frac{dx}{x+\sin^n x +\cos^n x} . $ [b]a)[/b] Study the monotony of $ \left( I_n \right)_{n\ge 1} . $ [b]b)[/b] Calculate the limit of $ \left( I_n \right)_{n\ge 1} . $

1990 National High School Mathematics League, 10

Define $f(n):$ the number of integral points of line segment $OA_n$ ($O$ and $A_n$ not included), where $A_n(n,n+3)$. Then, $f(1)+f(2)+\cdots+f(1990)=$________.

1969 Miklós Schweitzer, 6

Let $ x_0$ be a fixed real number, and let $ f$ be a regular complex function in the half-plane $ \Re z>x_0$ for which there exists a nonnegative function $ F \in L_1(- \infty, +\infty)$ satisfying $ |f(\alpha+i\beta)| \leq F(\beta)$ whenever $ \alpha > x_0$ , $ -\infty <\beta < +\infty$. Prove that \[ \int_{\alpha-i \infty} ^{\alpha+i \infty} f(z)dz=0.\] [i]L. Czach[/i]

2011 Today's Calculation Of Integral, 740

Let $r$ be a positive constant. If 2 curves $C_1: y=\frac{2x^2}{x^2+1},\ C_2: y=\sqrt{r^2-x^2}$ have each tangent line at their point of intersection and at which their tangent lines are perpendicular each other, then find the area of the figure bounded by $C_1,\ C_2$.

2009 Today's Calculation Of Integral, 475

For a positive constant number $ t$, let denote $ D$ the region surrounded by the curve $ y \equal{} e^{x}$, the line $ x \equal{} t$, the $ x$ axis and the $ y$ axis. Let $ V_x,\ V_y$ be the volumes of the solid obtained by rotating $ D$ about the $ x$ axis and the $ y$ axis respectively. Compare the size of $ V_x,\ V_y.$

2009 Today's Calculation Of Integral, 489

Find the following limit. $ \lim_{n\to\infty} \int_{\minus{}1}^1 |x|\left(1\plus{}x\plus{}\frac{x^2}{2}\plus{}\frac{x^3}{3}\plus{}\cdots \plus{}\frac{x^{2n}}{2n}\right)\ dx$.

2024 CMIMC Integration Bee, 8

\[\int_1^2 \cos(\sin^{-1}(\tan(\cos^{-1}(\sin(\tan^{-1}(x))))))\mathrm dx\] [i]Proposed by Robert Trosten[/i]

2023 Romania National Olympiad, 4

Let $f:[0,1] \rightarrow \mathbb{R}$ a non-decreasing function, $f \in C^1,$ for which $f(0) = 0.$ Let $g:[0,1] \rightarrow \mathbb{R}$ a function defined by \[ g(x) = f(x) + (x - 1) f'(x), \forall x \in [0,1]. \] a) Show that \[ \int_{0}^{1} g(x) \text{dx} = 0. \] b) Prove that for all functions $\phi :[0,1] \rightarrow [0,1],$ convex and differentiable with $\phi(0) = 0$ and $\phi(1) = 1,$ the inequality holds \[ \int_{0}^{1} g( \phi(t)) \text{dt} \leq 0. \]

1991 Arnold's Trivium, 81

Find the Green's function of the operator $d^2/dx^2-1$ and solve the equation \[\int_{-\infty}^{+\infty}e^{-|x-y|}u(y)dy=e^{-x^2}\]

2009 Today's Calculation Of Integral, 451

Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \ln \left(1\plus{}\frac{k^a}{n^{a\plus{}1}}\right).$

2014 Contests, 2

The roots of the equation \[ x^3-3ax^2+bx+18c=0 \] form a non-constant arithmetic progression and the roots of the equation \[ x^3+bx^2+x-c^3=0 \] form a non-constant geometric progression. Given that $a,b,c$ are real numbers, find all positive integral values $a$ and $b$.

2000 District Olympiad (Hunedoara), 4

Let $ f:[0,1]\longrightarrow\mathbb{R}_+^* $ be a Riemann-integrable function. Calculate $ \lim_{n\to\infty}\left(-n+\sum_{i=1}^ne^{\frac{1}{n}\cdot f\left(\frac{i}{n}\right)}\right) . $

1995 National High School Mathematics League, 10

The number of integral points satisfy $\begin{cases} y\leq 3x\\ y\geq \frac{x}{3}\\ x+y\geq100 \end{cases}$ on the coordinate plane is________.

2005 Today's Calculation Of Integral, 30

A sequence $\{a_n\}$ is defined by $a_n=\int_0^1 x^3(1-x)^n dx\ (n=1,2,3.\cdots)$ Find the constant number $c$ such that $\sum_{n=1}^{\infty} (n+c)(a_n-a_{n+1})=\frac{1}{3}$

1960 AMC 12/AHSME, 24

If $\log_{2x}216 = x$, where $x$ is real, then $x$ is: $ \textbf{(A)}\ \text{A non-square, non-cube integer} \qquad$ $\textbf{(B)}\ \text{A non-square, non-cube, non-integral rational number} \qquad$ $\textbf{(C)}\ \text{An irrational number} \qquad$ $\textbf{(D)}\ \text{A perfect square}\qquad$ $\textbf{(E)}\ \text{A perfect cube} $

2004 China Team Selection Test, 3

Given arbitrary positive integer $ a$ larger than $ 1$, show that for any positive integer $ n$, there always exists a n-degree integral coefficient polynomial $ p(x)$, such that $ p(0)$, $ p(1)$, $ \cdots$, $ p(n)$ are pairwise distinct positive integers, and all have the form of $ 2a^k\plus{}3$, where $ k$ is also an integer.

2023 Romania National Olympiad, 3

Let $a,b \in \mathbb{R}$ with $a < b,$ 2 real numbers. We say that $f: [a,b] \rightarrow \mathbb{R}$ has property $(P)$ if there is an integrable function on $[a,b]$ with property that \[ f(x) - f \left( \frac{x + a}{2} \right) = f \left( \frac{x + b}{2} \right) - f(x) , \forall x \in [a,b]. \] Show that for all real number $t$ there exist a unique function $f:[a,b] \rightarrow \mathbb{R}$ with property $(P),$ such that $\int_{a}^{b} f(x) \text{dx} = t.$

2010 Today's Calculation Of Integral, 648

Consider a function real-valued function with $C^{\infty}$-class on $\mathbb{R}$ such that: (a) $f(0)=\frac{df}{dx}(0)=0,\ \frac{d^2f}{dx^2}(0)\neq 0.$ (b) For $x\neq 0,\ f(x)>0.$ Judge whether the following integrals $(i),\ (ii)$ converge or diverge, justify your answer. $(i)$ \[\int\int_{|x_1|^2+|x_2|^2\leq 1} \frac{dx_1dx_2}{f(x_1)+f(x_2)}.\] $(ii)$ \[\int\int_{|x_1|^2+|x_2|^2+|x_3|^2\leq 1} \frac{dx_1dx_2dx_3}{f(x_1)+f(x_2)+f(x_3)}.\] [i]2010 Kyoto University, Master Course in Mathematics[/i]

2011 Tokio University Entry Examination, 6

(1) Let $x>0,\ y$ be real numbers. For variable $t$, find the difference of Maximum and minimum value of the quadratic function $f(t)=xt^2+yt$ in $0\leq t\leq 1$. (2) Let $S$ be the domain of the points $(x,\ y)$ in the coordinate plane forming the following condition: For $x>0$ and all real numbers $t$ with $0\leq t\leq 1$ , there exists real number $z$ for which $0\leq xt^2+yt+z\leq 1$ . Sketch the outline of $S$. (3) Let $V$ be the domain of the points $(x,\ y,\ z) $ in the coordinate space forming the following condition: For $0\leq x\leq 1$ and for all real numbers $t$ with $0\leq t\leq 1$, $0\leq xt^2+yt+z\leq 1$ holds. Find the volume of $V$. [i]2011 Tokyo University entrance exam/Science, Problem 6[/i]

2010 Today's Calculation Of Integral, 529

Prove that the following inequality holds for each natural number $ n$. \[ \int_0^{\frac {\pi}{2}} \sum_{k \equal{} 1}^n \left(\frac {\sin kx}{k}\right)^2dx < \frac {61}{144}\pi\]