Found problems: 1687
2011 Today's Calculation Of Integral, 730
Let $a_n$ be the local maximum of $f_n(x)=\frac{x^ne^{-x+n\pi}}{n!}\ (n=1,\ 2,\ \cdots)$ for $x>0$.
Find $\lim_{n\to\infty} \ln \left(\frac{a_{2n}}{a_n}\right)^{\frac{1}{n}}$.
1974 Miklós Schweitzer, 5
Let $ \{f_n \}_{n=0}^{\infty}$ be a uniformly bounded sequence of real-valued measurable functions defined on $ [0,1]$ satisfying \[ \int_0^1 f_n^2=1.\] Further, let $ \{ c_n \}$ be a sequence of real numbers with \[ \sum_{n=0}^{\infty} c_n^2= +\infty.\] Prove that some re-arrangement of the series $ \sum_{n=0}^{\infty} c_nf_n$ is divergent on a set of positive measure.
[i]J. Komlos[/i]
2008 Romania National Olympiad, 3
Let $ f: \mathbb R \to \mathbb R$ be a function, two times derivable on $ \mathbb R$ for which there exist $ c\in\mathbb R$ such that
\[ \frac { f(b)\minus{}f(a) }{b\minus{}a} \neq f'(c) ,\] for all $ a\neq b \in \mathbb R$.
Prove that $ f''(c)\equal{}0$.
1999 Harvard-MIT Mathematics Tournament, 1
Find all twice differentiable functions $f(x)$ such that $f^{\prime \prime}(x)=0$, $f(0)=19$, and $f(1)=99$.
2010 Today's Calculation Of Integral, 537
Evaluate $ \int_0^{\frac{\pi}{6}} \frac{\sqrt{1\plus{}\sin x}}{\cos x}\ dx$.
2004 Vietnam Team Selection Test, 2
Find all real values of $\alpha$, for which there exists one and only one function $f: \mathbb{R} \mapsto \mathbb{R}$ and satisfying the equation \[ f(x^2 + y + f(y)) = (f(x))^2 + \alpha \cdot y \] for all $x, y \in \mathbb{R}$.
1974 Miklós Schweitzer, 6
Let $ f(x)\equal{}\sum_{n\equal{}1}^{\infty} a_n/(x\plus{}n^2), \;(x \geq 0)\ ,$ where $ \sum_{n\equal{}1}^{\infty} |a_n|n^{\minus{} \alpha} < \infty$ for some $ \alpha > 2$. Let us assume that for some $ \beta > 1/{\alpha}$, we have $ f(x)\equal{}O(e^{\minus{}x^{\beta}})$ as $ x \rightarrow \infty$. Prove that $ a_n$ is identically $ 0$.
[i]G. Halasz[/i]
2009 Greece JBMO TST, 3
Given are the non zero natural numbers $a,b,c$ such that the number $\frac{a\sqrt2+b\sqrt3}{b\sqrt2+c\sqrt3}$ is rational.
Prove that the number $\frac{a^2+b^2+c^2}{a+b+c}$ is an integer .
2005 Today's Calculation Of Integral, 14
Calculate the following indefinite integrals.
[1] $\int \frac{\sin x\cos x}{1+\sin ^ 2 x}dx$
[2] $\int x\log_{10} x dx$
[3] $\int \frac{x}{\sqrt{2x-1}}dx$
[4] $\int (x^2+1)\ln x dx$
[5] $\int e^x\cos x dx$
1975 AMC 12/AHSME, 22
If $ p$ and $ q$ are primes and $ x^2 \minus{} px \plus{} q \equal{} 0$ has distinct positive integral roots, then which of the following statements are true?
$ \text{I. The difference of the roots is odd.}$
$ \text{II. At least one root is prime.}$
$ \text{III. } p^2 \minus{} q \text{ is prime.}$
$ \text{IV. } p \plus{} q \text{ is prime.}$
$ \textbf{(A)}\ \text{I only} \qquad
\textbf{(B)}\ \text{II only} \qquad
\textbf{(C)}\ \text{II and III only} \qquad$
$ \textbf{(D)}\ \text{I, II and IV only} \qquad
\textbf{(E)}\ \text{All are true.}$
2012 Today's Calculation Of Integral, 797
In the $xyz$-space take four points $P(0,\ 0,\ 2),\ A(0,\ 2,\ 0),\ B(\sqrt{3},-1,\ 0),\ C(-\sqrt{3},-1,\ 0)$.
Find the volume of the part satifying $x^2+y^2\geq 1$ in the tetrahedron $PABC$.
50 points
2005 Today's Calculation Of Integral, 91
Prove the following inequality.
\[ \sum_{n=0}^\infty \int_0^1 x^{4011} (1-x^{2006})^\frac{n-1}{2006}\ dx<\frac{2006}{2005} \]
2006 Romania Team Selection Test, 4
Let $p$, $q$ be two integers, $q\geq p\geq 0$. Let $n \geq 2$ be an integer and $a_0=0, a_1 \geq 0, a_2, \ldots, a_{n-1},a_n = 1$ be real numbers such that \[ a_{k} \leq \frac{ a_{k-1} + a_{k+1} } 2 , \ \forall \ k=1,2,\ldots, n-1 . \] Prove that \[ (p+1) \sum_{k=1}^{n-1} a_k^p \geq (q+1) \sum_{k=1}^{n-1} a_k^q . \]
2010 Today's Calculation Of Integral, 615
For $0\leq a\leq 2$, find the minimum value of $\int_0^2 \left|\frac{1}{1+e^x}-\frac{1}{1+e^a}\right|\ dx.$
[i]2010 Kyoto Institute of Technology entrance exam/Textile e.t.c.[/i]
2012 Today's Calculation Of Integral, 841
Find $\int_0^x \frac{dt}{1+t^2}+\int_0^{\frac{1}{x}} \frac{dt}{1+t^2}\ (x>0).$
1984 Putnam, B4
Find, with proof, all real-valued functions $y=g(x)$ defined and continuous on $[0,\infty)$, positive on $(0,\infty)$, such that for all $x>0$ the $y$-coordinate of the centroid of the region
$$R_x=\{(s,t)\mid0\le s\le x,\enspace0\le t\le g(s)\}$$is the same as the average value of $g$ on $[0,x]$.
2007 Today's Calculation Of Integral, 253
Evaluate $ \int_0^1 (1 \plus{} x \plus{} x^2 \plus{} \cdots \plus{} x^{n \minus{} 1})\{1 \plus{} 3x \plus{} 5x^2 \plus{} \cdots \plus{} (2n \minus{} 3)x^{n \minus{} 2} \plus{} (2n \minus{} 1)x^{n \minus{} 1}\}\ dx.$
2006 IberoAmerican Olympiad For University Students, 4
Prove that for any interval $[a,b]$ of real numbers and any positive integer $n$ there exists a positive integer $k$ and a partition of the given interval
\[a = x (0) < x (1) < x (2) < \cdots < x (k-1) < x (k) = b\]
such that
\[\int_{x(0)}^{x(1)}f(x)dx+\int_{x(2)}^{x(3)}f(x)dx+\cdots=\int_{x(1)}^{x(2)}f(x)dx+\int_{x(3)}^{x(4)}f(x)dx+\cdots\]
for all polynomials $f$ with real coefficients and degree less than $n$.
1984 Putnam, A5
Putnam 1984/A5) Let $R$ be the region consisting of all triples $(x,y,z)$ of nonnegative real numbers satisfying $x+y+z\leq 1$. Let $w=1-x-y-z$. Express the value of the triple integral
\[\iiint_{R}xy^{9}z^{8}w^{4}\ dx\ dy\ dz\]
in the form $a!b!c!d!/n!$ where $a,b,c,d$ and $n$ are positive integers.
[hide="A solution"]\[\iiint_{R}xy^{9}z^{8}w^{4}\ dx dy dz = 4\iiint_{R}\int_{0}^{1-x-y-z}xy^{9}z^{8}w^{3}\ dw dx dy dz = 4\iiiint_{Q}xy^{9}z^{8}w^{3}\ dw dx dy dz\]
where $Q=\left\{ (x,y,z,w)\in\mathbb{R}^{4}|\ x,y,z,w\geq 0, x+y+z+w\leq 1\right\}$, which is a Dirichlet integral giving
\[4\iiiint_{Q}x^{1}y^{9}z^{8}w^{3}\ dw dx dy dz = 4\cdot\frac{1!9!8!3!}{(2+10+9+4)!}= \frac{1!9!8!4!}{25!}\][/hide]
Today's calculation of integrals, 861
Answer the questions as below.
(1) Find the local minimum of $y=x(1-x^2)e^{x^2}.$
(2) Find the total area of the part bounded the graph of the function in (1) and the $x$-axis.
2008 Moldova National Olympiad, 12.8
Evaluate $ \displaystyle I \equal{} \int_0^{\frac\pi4}\left(\sin^62x \plus{} \cos^62x\right)\cdot \ln(1 \plus{} \tan x)\text{d}x$.
2010 ELMO Shortlist, 4
The numbers $1, 2, \ldots, n$ are written on a blackboard. Each minute, a student goes up to the board, chooses two numbers $x$ and $y$, erases them, and writes the number $2x+2y$ on the board. This continues until only one number remains. Prove that this number is at least $\frac{4}{9}n^3$.
[i]Brian Hamrick.[/i]
2021 CMIMC Integration Bee, 1
$$\int_0^5 \max(2x,x^2)\,dx$$
[i]Proposed by Connor Gordon[/i]
2009 Today's Calculation Of Integral, 461
Let $ I_n\equal{}\int_0^{\sqrt{3}} \frac{1}{1\plus{}x^{n}}\ dx\ (n\equal{}1,\ 2,\ \cdots)$.
(1) Find $ I_1,\ I_2$.
(2) Find $ \lim_{n\to\infty} I_n$.
2007 Moldova National Olympiad, 12.4
If the function $f\colon [1,2]\to R$ is such that $\int_{1}^{2}f(x) dx=\frac{73}{24}$, then show that there exists a $x_{0}\in (1;2)$ such that
\[x_{0}^{2}<f(x_{0})<x_{0}^{3}\]
[Edit: $f$ is continuous]